Skip to main content
Log in

A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hunt, D.F., Yates III, J.R., Shabanowitz, J., Winston, S., Hauer, C.R.: Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 83, 6233–6237 (1986)

    Article  CAS  Google Scholar 

  2. Dancik, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pevzner, P.A.: De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6, 327–342 (1999)

    Article  CAS  Google Scholar 

  3. Taylor, J.A., Johnson, R.S.: Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1067–1075 (1997)

    Article  CAS  Google Scholar 

  4. Bandeira, N., Pham, V., Pevzner, P., Arnott, D., Lill, J.R.: Automated de novo protein sequencing of monoclonal antibodies. Nat. Biotechnol. 26, 1336–1338 (2008)

    Article  CAS  Google Scholar 

  5. Adamczyk, M., Gebler, J.C., Wu, J.: Sequencing of anti-thyroxine monoclonal antibody fab fragment by ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 14, 999–1007 (2000)

    Article  CAS  Google Scholar 

  6. Adamczyk, M., Gebler, J.C., Wu, J., Yu, Z.: Complete sequencing of anti-vancomycin Fab fragment by liquid chromatography-electrospray ion trap mass spectrometry with a combination of database searching and manual interpretation of the MS/MS spectra. J. Immunol. Methods 260, 235–249 (2002)

    Article  CAS  Google Scholar 

  7. Wine, Y., Boutz, D.R., Lavinder, J.J., Miklos, A.E., Hughes, R.A., Hoi, K.H., Jung, S.T., Horton, A.P., Murrin, E.M., Ellington, A.D., Marcotte, E.M., Georgiou, G.: Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. U. S. A. 110, 2993–2998 (2013)

    Article  CAS  Google Scholar 

  8. Cheung, W.C., Beausoleil, S.A., Zhang, X., Sato, S., Schieferl, S.M., Wieler, J.S., Beaudet, J.G., Ramenani, R.K., Popova, L., Comb, M.J., Rush, J., Polakiewicz, R.D.: A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat. Biotechnol. 30, 447–452 (2012)

    Article  CAS  Google Scholar 

  9. Pham, V., Henzel, W.J., Arnott, D., Hymowitz, S., Sandoval, W.N., Truong, B.T., Lowman, H., Lill, J.R.: De novo proteomic sequencing of a monoclonal antibody raised against Ox40 ligand. Anal. Biochem. 352, 77–86 (2006)

    Article  CAS  Google Scholar 

  10. Sitbon, M., d'Auriol, L., Ellerbrok, H., Andre, C., Nishio, J., Perryman, S., Pozo, F., Hayes, S.F., Wehrly, K., Tambourin, P.: Substitution of leucine for isoleucine in a sequence highly conserved among retroviral envelope surface glycoproteins attenuates the lytic effect of the friend murine leukemia virus. Proc. Natl. Acad. Sci. U. S. A. 88, 5932–5936 (1991)

    Article  CAS  Google Scholar 

  11. Herlihy, W.C., Kidwell, D., Meeusen, B., Biemann, K.: Mass spectrometric differentiation of leucine and isoleucine in proteins derived from bacteria or cell culture. Biochem. Biophys. Res. Commun. 102, 335–340 (1981)

    Article  CAS  Google Scholar 

  12. Nakamura, T., Nagaki, H., Ohki, Y., Kinoshita, T.: Differentiation of leucine and isoleucine residues in peptides by consecutive reaction mass spectrometry. Anal. Chem. 62, 311–313 (1990)

    Article  CAS  Google Scholar 

  13. Gupta, K., Kumar, M., Chandrashekara, K., Krishnan, K.S., Balaram, P.: Combined electron transfer dissociation-collision-induced dissociation fragmentation in the mass spectrometric distinction of leucine, isoleucine, and hydroxyproline residues in peptide natural products. J. Proteome Res. 11, 515–522 (2012)

    Article  CAS  Google Scholar 

  14. Seymour, J.L., Turecek, F.: Distinction and quantitation of leucine-isoleucine isomers and lysine-glutamine isobars by electrospray ionization tandem mass spectrometry (MS(N), N = 2, 3) of copper(Ii)-diimine complexes. J. Mass Spectrom. 35, 566–571 (2000)

    Article  CAS  Google Scholar 

  15. Wee, S., O'Hair, R.A., McFadyen, W.D.: Side-chain radical losses from radical cations allows distinction of leucine and isoleucine residues in the isomeric peptides Gly-Xxx-Arg. Rapid Commun. Mass Spectrom. 16, 884–890 (2002)

    Article  CAS  Google Scholar 

  16. Soltwisch, J., Dreisewerd, K.: Discrimination of isobaric leucine and isoleucine residues and analysis of post-translational modifications in peptides by MALDI in-source decay mass spectrometry combined with collisional cooling. Anal. Chem. 82, 5628–5635 (2010)

    Article  CAS  Google Scholar 

  17. Asakawa, D., Smargiasso, N., De Pauw, E.: Discrimination of isobaric Leu/Ile residues by MALDI in-source decay mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 297–300 (2013)

    Article  CAS  Google Scholar 

  18. Kjeldsen, F., Haselmann, K.F., Sorensen, E.S., Zubarev, R.A.: Distinguishing of Ile/Leu amino acid residues in the Pp3 protein by (Hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 75, 1267–1274 (2003)

    Article  CAS  Google Scholar 

  19. Hale, J.E., Butler, J.P., Gelfanova, V., You, J.S., Knierman, M.D.: A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal. Biochem. 333, 174–181 (2004)

    Article  CAS  Google Scholar 

  20. Therneau, T., Atkinson, B., Ripley, B.: Rpart: Recursive partitioning. R package version 4.1-1 (2013)

  21. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., Müller, M.: PROC: an open-source package for R and S+ to analyze and compare ROC Curves. BMC Bioinforma. 12, 77 (2011)

  22. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2, 18–22 (2002)

    Google Scholar 

  23. R Development Core Team, R: A Language and environment for statistical computing. Vienna, Austria : the R Foundation for Statistical Computing (2011)

  24. Smith, E.L., Polglase, W.J.: The specificity of leucine aminopeptidase; optical and side chain specificity. J. Biol. Chem. 180, 1209–1223 (1949)

    CAS  Google Scholar 

  25. Roach, D., Roach, G., Charles, W.: Direct esterification of the protein amino acids gas-liquid chromatography of N-TFA N-butyl esters. J. Chromatogr. 44, 269–278 (1969)

    Article  CAS  Google Scholar 

  26. Blow, D.M.: The structure of chymotrypsin. The enzymes, 3rd edition, (ed.) P.D.Boyer. Academic Press, New York 3, 185–212 (1971)

  27. Breiman, L.: Random forests. Mach Learn 45, 5–32 (2001)

  28. Breiman, L., Friedman, J.F., Stone, C.J., Olshen, R.A.: Classification and regression trees. Chapman & Hall, New York, New York (1984)

  29. Meyer, J.G., Kim, S., Maltby, D., Ghassemian, M., Bandeira, N., Komives, E.A.: Expanding proteome coverage with orthogonal-specificity alhpa-lytic proteases. Mol. Cell. Proteom 13, 823–835x (2014)

Download references

Acknowledgment

The authors thank Dr. Yuewei Qian for expression of human leucine aminopeptidase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus A. Gutierrez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(PDF 167 kb)

Supplemental Figure 2

(PDF 23 kb)

Supplemental Figure 3

(PDF 88 kb)

Supplemental Figure 4

(PDF 18 kb)

Supplemental Figure 5

(PDF 139 kb)

Supplemental Figure 6

(PDF 26 kb)

ESM 1

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poston, C.N., Higgs, R.E., You, J. et al. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing. J. Am. Soc. Mass Spectrom. 25, 1228–1236 (2014). https://doi.org/10.1007/s13361-014-0892-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0892-1

Key words

Navigation