Skip to main content
Log in

Least-Squares Fitting of Time-Domain Signals for Fourier Transform Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

To advance Fourier transform mass spectrometry (FTMS)-based molecular structure analysis, corresponding development of the FTMS signal processing methods and instrumentation is required. Here, we demonstrate utility of a least-squares fitting (LSF) method for analysis of FTMS time-domain (transient) signals. We evaluate the LSF method in the analysis of single- and multiple-component experimental and simulated ion cyclotron resonance (ICR) and Orbitrap FTMS transient signals. Overall, the LSF method allows one to estimate the analytical limits of the conventional instrumentation and signal processing methods in FTMS. Particularly, LSF provides accurate information on initial phases of sinusoidal components in a given transient. For instance, the phase distribution obtained for a statistical set of experimental transients reveals the effect of the first data-point problem in FT-ICR MS. Additionally, LSF might be useful to improve the implementation of the absorption-mode FT spectral representation for FTMS applications. Finally, LSF can find utility in characterization and development of filter-diagonalization method (FDM) MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Marshall, A.G., Hendrickson, C.L.: High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1, 579–599 (2008)

    Article  CAS  Google Scholar 

  2. Scigelova, M., Hornshaw, M., Giannakopulos, A., Makarov, A.: Fourier transform mass spectrometry. Mol. Cell. Proteom. 10, M111.009431 (2011)

    Article  Google Scholar 

  3. Xian, F., Hendrickson, C.L., Marshall, A.G.: High resolution mass spectrometry. Anal. Chem. 84, 708–719 (2012)

    Article  CAS  Google Scholar 

  4. Zubarev, R.A., Makarov, A.: Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013)

    Article  CAS  Google Scholar 

  5. Comisarow, M.B., Marshall, A.G.: Selective-phase ion-cyclotron resonance spectroscopy. Can. J. Chem. 52, 1997–1999 (1974)

    Article  CAS  Google Scholar 

  6. Craig, E.C., Santos, I., Marshall, A.G., Nibbering, N.M.M.: Dispersion versus absorption (DISPA) method for automatic phasing of Fourier transform ion cyclotron resonance mass spectra. Rapid Commun. Mass Spectrom. 1, 33–37 (1987)

    Article  CAS  Google Scholar 

  7. Vining, B.A., Bossio, R.E., Marshall, A.G.: Phase correction for collision model analysis and enhanced resolving power of Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 71, 460–467 (1999)

    Article  CAS  Google Scholar 

  8. Beu, S.C., Blakney, G.T., Quinn, J.P., Hendrickson, C.L., Marshall, A.G.: Broadband phase correction of FT-ICR mass spectra via simultaneous excitation and detection. Anal. Chem. 76, 5756–5761 (2004)

    Article  CAS  Google Scholar 

  9. Xian, F., Hendrickson, C.L., Blakney, G.T., Beu, S.C., Marshall, A.G.: Automated Broadband Phase Correction of Fourier Transform Ion Cyclotron Resonance Mass Spectra. Anal. Chem. 82, 8807–8812 (2010)

    Article  CAS  Google Scholar 

  10. Qi, Y.L., Barrow, M.P., Li, H.L., Meier, J.E., Van Orden, S.L., Thompson, C.J., O'Connor, P.B.: Absorption-mode: the next generation of fourier transform mass spectra. Anal. Chem. 84, 2923–2929 (2012)

    Article  CAS  Google Scholar 

  11. Xian, F., Corilo, Y.E., Hendrickson, C.L., Marshall, A.G.: Baseline correction of absorption-mode Fourier transform ion cyclotron resonance mass spectra. Int. J. Mass Spectrom. 325, 67–72 (2012)

    Article  Google Scholar 

  12. Kilgour, D.P.A., Wills, R., Qi, Y.L., O'Connor, P.B.: Autophaser: an algorithm for automated generation of absorption mode spectra for fT-ICR MS. Anal. Chem. 85, 3903–3911 (2013)

    Article  CAS  Google Scholar 

  13. Lange, O.: Methods and apparatus for producing a mass spectrum. US Patent 2011/0240841 A1 (2011)

  14. Lange, O., Damoc, E., Wieghaus, A., Makarov, A.: Enhanced Fourier transform for Orbitrap mass spectrometry. Proceeding of the 59th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, CO, June 5 − 9 (2011)

  15. Hilger, R.T., Wyss, P.J., Santini, R.E., McLuckey, S.A.: Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry. Anal. Chem. 85, 8075–8079 (2013)

    Article  CAS  Google Scholar 

  16. Kozhinov, A.N., Tsybin, Y.O.: Filter diagonalization method-based mass spectrometry for molecular and macromolecular structure analysis. Anal. Chem. 84, 2850–2856 (2012)

    Article  CAS  Google Scholar 

  17. Kozhinov, A.N., Aushev, T., Tsybin, Y.O.: Advanced signal processing methods for FTMS: implementation and characterization. Proceedings of the 61st ASMS Conference on Mass Spectrometry and Allied Topics, Minneapolis, MN, (2013)

  18. Aushev, T., Adachi, I., Arinstein, K. : Study of the decays B -> Ds1(2536)(+) (D)over-bar(()*()). Phys. Rev. D 83, 051102-1–051102-6 (2011)

  19. Nikolaev, E.N., Gorshkov, M.V.: Dynamics of ion motion in an elongated cylindrical cell of an ICR spectrometer and the shape of the signal registered. Int. J. Mass Spectrom. Ion Process 64, 115–125 (1985)

    Article  CAS  Google Scholar 

  20. Grosshans, P.B., Shields, P.J., Marshall, A.G.: Comprehensive theory of the Fourier transform ion cyclotron resonance signal for all ion trap geometries. J. Chem. Phys. 94, 5341–5352 (1991)

    Article  CAS  Google Scholar 

  21. Miladinović, S.M., Kozhinov, A.N., Tsybin, O.Y., Tsybin, Y.O.: Sidebands in Fourier transform ion cyclotron resonance mass spectra. Int. J. Mass Spectrom. 325/327, 10–18 (2012)

  22. Grothe, R.A.: Estimation of ion cyclotron resonance parameters in Fourier transform mass spectrometry. US Patent 8431886, B2 (2013)

    Google Scholar 

  23. Grothe, R.A.: Mass spectrometry systems. US Patent 2013/0013274 A1 (2013)

  24. Nikolaev, E.N., Heeren, R.M.A., Popov, A.M., Pozdneev, A.V., Chingin, K.S.: Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Commun. Mass Spectrom. 21, 3527–3546 (2007)

    Article  CAS  Google Scholar 

  25. Nikolaev, E., Boldin, I., Jertz, R., Baykut, G.: Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 22, 1125–1133 (2011)

    Article  CAS  Google Scholar 

  26. Zhurov, K.O., Kozhinov, A.N., Tsybin, Y.O.: Evaluation of high-field Orbitrap Fourier transform mass spectrometer for petroleomics. Energy Fuels 27, 2974–2983 (2013)

    Article  CAS  Google Scholar 

  27. Kozhinov, A.N., Zhurov, K.O., Tsybin, Y.O.: Iterative method for mass spectra recalibration via empirical estimation of the mass calibration function for Fourier transform mass spectrometry-based petroleomics. Anal. Chem. 85, 6437–6445 (2013)

    Article  CAS  Google Scholar 

  28. Kozhinov, A.N., Miladinovic, S.M., Tsybin, Y.O.: Spectral errors in Fourier transform mass spectrometry revisited. Proceedings of the 59th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, CO, (2011)

  29. James, F., Roos, M.: Minuit—a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975)

    Article  Google Scholar 

  30. Tolmachev, A.V., Masselon, C.D., Anderson, G.A., Udseth, H.R., Smith, R.D.: Frequency shifts due to the interference of resolved peaks in magnitude-mode fourier-transform ion cyclotron resonance mass spectra. J. Am. Soc. Mass Spectrom. 13, 387–401 (2002)

    Article  CAS  Google Scholar 

  31. Easterling, M.L., Amster, I.J., van Rooij, G.J., Heeren, R.M.A.: Isotope beating effects in the analysis of polymer distributions by Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1074–1082 (1999)

    Article  CAS  Google Scholar 

  32. Aizikov, K., O'Connor, P.B.: Use of the filter diagonalization method in the study of space charge related frequency modulation in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 836–843 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Thermo Fisher Scientific Inc. for providing access under license to Orbitrap transient signals. They are grateful to Alexander Makarov for critical comments on the manuscript. They appreciate the financial support through the Joint Russia–Switzerland Research Program (grant agreement 128357), and the European Research Council (ERC Starting grant 280271 to YOT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury O. Tsybin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aushev, T., Kozhinov, A.N. & Tsybin, Y.O. Least-Squares Fitting of Time-Domain Signals for Fourier Transform Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1263–1273 (2014). https://doi.org/10.1007/s13361-014-0888-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0888-x

Key words

Navigation