Skip to main content
Log in

Fluorine Bonding Enhances the Energetics of Protein-Lipid Binding in the Gas Phase

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

This paper reports on the first experimental study of the energies of noncovalent fluorine bonding in a protein-ligand complex in the absence of solvent. Arrhenius parameters were measured for the dissociation of gaseous deprotonated ions of complexes of bovine β-lactoglobulin (Lg), a model lipid-binding protein, and four fluorinated analogs of stearic acid (SA), which contained (X =) 13, 15, 17, or 21 fluorine atoms. In all cases, the activation energies (Ea) measured for the loss of neutral XF-SA from the (Lg + XF-SA)7– ions are larger than for SA. From the kinetic data, the average contribution of each > CF2 group to Ea was found to be ~1.1 kcal mol–1, which is larger than the ~0.8 kcal mol–1 value reported for > CH2 groups. Based on these results, it is proposed that fluorocarbon–protein interactions are inherently stronger (enthalpically) than the corresponding hydrocarbon interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Banks, R.E., Smart, B.E., Tatlow, J.C.: Organofluorine chemistry: principles and commercial applications. Plenum Press, New York (1994)

    Book  Google Scholar 

  2. Clader, J.W.: The discovery of ezetimibe: a view from outside the receptor. J Med Chem 47, 1–9 (2004)

    Article  CAS  Google Scholar 

  3. Hugel, H.M., Jackson, N.: Special feature organo-fluorine chemical science. Appl Sci 2, 558–565 (2012)

    Article  CAS  Google Scholar 

  4. Gunduz, M., Argikar, U.A., Kamel, A., Colizza, K., Bushee, J., Cirello, A., Lombardo, F., Harriman, S.: Oxidative ipso substitution of 2,4-difluoro-benzylphthalazines: identification of a rare stable quinone methide and subsequent GSH conjugate. Drug Metab Dispos 40, 2074–2080 (2012)

    Article  CAS  Google Scholar 

  5. Vasdev, N., Dorff, P.N., O’Neil, J.P., Chin, F.T., Hanrahan, S., Van Brocklin, H.F.: Metabolic stability of 6,7-dialkoxy-4-(2-,3-and 4-[18f] fluoroanilino) quinazolines, potential EGFR imaging probes. Bioorg Med Chem 19, 2959–2965 (2011)

    Article  CAS  Google Scholar 

  6. Böhm, H., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U., Stahl, M.: Fluorine in medicinal chemistry. Chem Bio Chem 5, 637–643 (2004)

    Article  CAS  Google Scholar 

  7. Kim, C., Chang, J.S., Doyon, J.B., Baird Jr., T.T., Fierke, C.A., Jain, A., Christianson, D.W.: Contribution of fluorine to protein–ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. J Am Chem Soc 122, 12125–12134 (2000)

    Article  CAS  Google Scholar 

  8. Rendine, S., Pieraccini, S., Forni, A., Sironi, M.: Halogen bonding in ligand–receptor systems in the framework of classical force fields. Phys Chem Chem Phys 13, 19508–19516 (2011)

    Article  CAS  Google Scholar 

  9. Benitex, Y., Baranger, A.M.: Control of the stability of a protein Baranger, A.: M RNA complex by the position of fluorine in a base analogue. J Am Chem Soc 133, 3687–3689 (2011)

    Article  CAS  Google Scholar 

  10. Lee, Y., Zeng, H., Ruedisser, S., Gossert, A.D., Hilty, C.: Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J Am Chem Soc 134, 17448–17451 (2012)

    Article  CAS  Google Scholar 

  11. Zhou, P., Zou, J., Tian, F., Shang, Z.: Fluorine bonding—how does it work in protein–ligand interactions. J Chem Inf Model 49, 2344–2355 (2009)

    Article  CAS  Google Scholar 

  12. Kuhn, B., Kollman, P.A.: A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J Am Chem Soc 122, 3909–3916 (2000)

    Article  CAS  Google Scholar 

  13. Kawahara, S., Tsuzuki, S., Uchimaru, T.: Theoretical study of the C-F/π interaction: attractive interaction between fluorinated alkane and an electron-deficient π–system. J Phys Chem A 108, 6744–6749 (2004)

    Google Scholar 

  14. Riley, K.E., Merz, K.M.: Effects of fluorine substitution on the edge-to-face interaction of the benzene dimer. J Phys Chem B 109, 17752–17756 (2005)

    Article  CAS  Google Scholar 

  15. Chopra, D., Nagarajan, K., Row, T.N.G.: Analysis of weak interactions involving organic fluorine: insights from packing features in substituted 4-keto-tetrahydroindoles. J Mol Struct 888, 70–83 (2008)

    Article  CAS  Google Scholar 

  16. Iwaoka, M., Komatsu, H., Katsuda, T., Tomoda, S.: Quantitative evaluation of weak nonbonded Se•••F interactions and their remarkable nature as orbital interactions. J Am Chem Soc 124, 1902–1909 (2002)

    Google Scholar 

  17. Matta, C.F., Castillo, N., Boyd, R.J.: Characterization of a closed-shell fluorine-fluorine bonding interaction in aromatic compounds on the basis of the electron density. J Phys Chem A 109, 3669–3681 (2005)

    Article  CAS  Google Scholar 

  18. Lee, S., Mallik, A.B., Fredrickson, D.C.: Dipolar–dipolari nteractions and the crystal packing of nitriles, ketones, aldehydes, and C(sp2)-F groups. Cryst Growth Des 4, 279–290 (2004)

    Article  CAS  Google Scholar 

  19. Olsen, J.A., Banner, D.W., Seiler, P., Sander, U.O., D’Arcy, A., Stihle, M., Müller, K., Diederich, F.: A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme reactive site: evidence for C-F · · · C = O interactions. Angew Chem Int Ed 42, 2507–2511 (2003)

    Article  CAS  Google Scholar 

  20. Plenio, H.: The coordination chemistry of fluorine in fluorocarbons. Chem. Bio Chem. 5, 650–655 (2004)

    Article  CAS  Google Scholar 

  21. Bettinger, H.F.: How good is fluorine as a hydrogen-bond acceptor in fluorinated single-walled carbon nanotubes? Chem Phys Chem 6, 1169–1174 (2005)

    Article  CAS  Google Scholar 

  22. Müller, K., Faeh, C., Diederich, F.: Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007)

    Article  CAS  Google Scholar 

  23. Mecinović, J., Snyder, P.W., Mirica, K.A., Bai, S., Mack, E.T., Kwant, R.L., Moustakas, D.T., Héroux, A., Whitesides, G.M.: Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the “hydrophobic wall” of carbonic anhydrase. J Am Chem Soc 133, 14017–14026 (2011)

    Article  CAS  Google Scholar 

  24. Kontopidis, G., Holt, C., Sawyer, L.: Beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87, 785–796 (2004)

    Article  CAS  Google Scholar 

  25. Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, H.M., Baker, E.N., Jameson, G.B.: Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry 37, 14014–14023 (1998)

    Article  CAS  Google Scholar 

  26. Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient blackbody radiation. Science 279, 194–197 (1998)

    Article  CAS  Google Scholar 

  27. Price, W.D., Schnier, P.D., Jockusch, R.A., Strittmatter, E.R., Williams, E.R.: Unimolecular reactions kinetics in the high-pressure limit without collisions. J Am Chem Soc 118, 10640–10644 (1996)

    Article  CAS  Google Scholar 

  28. Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein-ligand interactions preserved in the gas phase. J Am Chem Soc 131, 15980–15981 (2009)

    Article  CAS  Google Scholar 

  29. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem Inform 4, 17 (2012)

    CAS  Google Scholar 

  30. Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.-Y.: R.E.D. server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39, W511–W517 (2011)

    Article  CAS  Google Scholar 

  31. Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., Cieplak, P.: The R.E.D. tools: advances in RESP and ESP charge derivation and force feld library building. Phys Chem Chem Phys 12, 7821–7839 (2010)

    Article  CAS  Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr, Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT (2009)

  33. Wu, S.Y., Perez, M.D., Puyol, P., Sawyer, L.: β-lactoglobulin binds palmitate within its central cavity. J Biol Chem 274, 170–174 (1999)

    Article  CAS  Google Scholar 

  34. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A.W., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Wolf, R.M., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe D.R., Mathews D.H., Seetin M.G., Salomon-Ferrer, R., Sagui, C., Babin V., Luchko, T., Gusarov, S., Kovalenko A., Kollman, P.A.: AMBER 12 University of California: San Francisco (2012)

  35. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J Comput Chem 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  36. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development of testing of a general amber force field. J Comput Chem 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  37. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  38. Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J Molec Graphics 14(1), 33–38 (1996)

    Article  CAS  Google Scholar 

  39. Origin: OriginLab, Northampton, MA 01060, USA

  40. Sun, J., Kitova, E.N., Klassen, J.S.: Method for stabilizing protein–ligand complexes in nanoelectrospray ionization mass spectrometry. Anal Chem 79, 416–425 (2007)

    Article  CAS  Google Scholar 

  41. Bagal, D., Kitova, E.N., Liu, L., El-Haweit, A., Schnier, P.D., Klassen, J.S.: Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal Chem 81, 7801–7806 (2009)

    Article  CAS  Google Scholar 

  42. Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J Am Chem Soc 134, 3054–3060 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support provided by the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Klassen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Jalili, N., Baergen, A. et al. Fluorine Bonding Enhances the Energetics of Protein-Lipid Binding in the Gas Phase. J. Am. Soc. Mass Spectrom. 25, 751–757 (2014). https://doi.org/10.1007/s13361-014-0837-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0837-8

Key words

Navigation