Abstract
This paper reports on the first experimental study of the energies of noncovalent fluorine bonding in a protein-ligand complex in the absence of solvent. Arrhenius parameters were measured for the dissociation of gaseous deprotonated ions of complexes of bovine β-lactoglobulin (Lg), a model lipid-binding protein, and four fluorinated analogs of stearic acid (SA), which contained (X =) 13, 15, 17, or 21 fluorine atoms. In all cases, the activation energies (Ea) measured for the loss of neutral XF-SA from the (Lg + XF-SA)7– ions are larger than for SA. From the kinetic data, the average contribution of each > CF2 group to Ea was found to be ~1.1 kcal mol–1, which is larger than the ~0.8 kcal mol–1 value reported for > CH2 groups. Based on these results, it is proposed that fluorocarbon–protein interactions are inherently stronger (enthalpically) than the corresponding hydrocarbon interactions.
Similar content being viewed by others
References
Banks, R.E., Smart, B.E., Tatlow, J.C.: Organofluorine chemistry: principles and commercial applications. Plenum Press, New York (1994)
Clader, J.W.: The discovery of ezetimibe: a view from outside the receptor. J Med Chem 47, 1–9 (2004)
Hugel, H.M., Jackson, N.: Special feature organo-fluorine chemical science. Appl Sci 2, 558–565 (2012)
Gunduz, M., Argikar, U.A., Kamel, A., Colizza, K., Bushee, J., Cirello, A., Lombardo, F., Harriman, S.: Oxidative ipso substitution of 2,4-difluoro-benzylphthalazines: identification of a rare stable quinone methide and subsequent GSH conjugate. Drug Metab Dispos 40, 2074–2080 (2012)
Vasdev, N., Dorff, P.N., O’Neil, J.P., Chin, F.T., Hanrahan, S., Van Brocklin, H.F.: Metabolic stability of 6,7-dialkoxy-4-(2-,3-and 4-[18f] fluoroanilino) quinazolines, potential EGFR imaging probes. Bioorg Med Chem 19, 2959–2965 (2011)
Böhm, H., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U., Stahl, M.: Fluorine in medicinal chemistry. Chem Bio Chem 5, 637–643 (2004)
Kim, C., Chang, J.S., Doyon, J.B., Baird Jr., T.T., Fierke, C.A., Jain, A., Christianson, D.W.: Contribution of fluorine to protein–ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. J Am Chem Soc 122, 12125–12134 (2000)
Rendine, S., Pieraccini, S., Forni, A., Sironi, M.: Halogen bonding in ligand–receptor systems in the framework of classical force fields. Phys Chem Chem Phys 13, 19508–19516 (2011)
Benitex, Y., Baranger, A.M.: Control of the stability of a protein Baranger, A.: M RNA complex by the position of fluorine in a base analogue. J Am Chem Soc 133, 3687–3689 (2011)
Lee, Y., Zeng, H., Ruedisser, S., Gossert, A.D., Hilty, C.: Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J Am Chem Soc 134, 17448–17451 (2012)
Zhou, P., Zou, J., Tian, F., Shang, Z.: Fluorine bonding—how does it work in protein–ligand interactions. J Chem Inf Model 49, 2344–2355 (2009)
Kuhn, B., Kollman, P.A.: A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J Am Chem Soc 122, 3909–3916 (2000)
Kawahara, S., Tsuzuki, S., Uchimaru, T.: Theoretical study of the C-F/π interaction: attractive interaction between fluorinated alkane and an electron-deficient π–system. J Phys Chem A 108, 6744–6749 (2004)
Riley, K.E., Merz, K.M.: Effects of fluorine substitution on the edge-to-face interaction of the benzene dimer. J Phys Chem B 109, 17752–17756 (2005)
Chopra, D., Nagarajan, K., Row, T.N.G.: Analysis of weak interactions involving organic fluorine: insights from packing features in substituted 4-keto-tetrahydroindoles. J Mol Struct 888, 70–83 (2008)
Iwaoka, M., Komatsu, H., Katsuda, T., Tomoda, S.: Quantitative evaluation of weak nonbonded Se•••F interactions and their remarkable nature as orbital interactions. J Am Chem Soc 124, 1902–1909 (2002)
Matta, C.F., Castillo, N., Boyd, R.J.: Characterization of a closed-shell fluorine-fluorine bonding interaction in aromatic compounds on the basis of the electron density. J Phys Chem A 109, 3669–3681 (2005)
Lee, S., Mallik, A.B., Fredrickson, D.C.: Dipolar–dipolari nteractions and the crystal packing of nitriles, ketones, aldehydes, and C(sp2)-F groups. Cryst Growth Des 4, 279–290 (2004)
Olsen, J.A., Banner, D.W., Seiler, P., Sander, U.O., D’Arcy, A., Stihle, M., Müller, K., Diederich, F.: A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme reactive site: evidence for C-F · · · C = O interactions. Angew Chem Int Ed 42, 2507–2511 (2003)
Plenio, H.: The coordination chemistry of fluorine in fluorocarbons. Chem. Bio Chem. 5, 650–655 (2004)
Bettinger, H.F.: How good is fluorine as a hydrogen-bond acceptor in fluorinated single-walled carbon nanotubes? Chem Phys Chem 6, 1169–1174 (2005)
Müller, K., Faeh, C., Diederich, F.: Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007)
Mecinović, J., Snyder, P.W., Mirica, K.A., Bai, S., Mack, E.T., Kwant, R.L., Moustakas, D.T., Héroux, A., Whitesides, G.M.: Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the “hydrophobic wall” of carbonic anhydrase. J Am Chem Soc 133, 14017–14026 (2011)
Kontopidis, G., Holt, C., Sawyer, L.: Beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87, 785–796 (2004)
Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, H.M., Baker, E.N., Jameson, G.B.: Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry 37, 14014–14023 (1998)
Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient blackbody radiation. Science 279, 194–197 (1998)
Price, W.D., Schnier, P.D., Jockusch, R.A., Strittmatter, E.R., Williams, E.R.: Unimolecular reactions kinetics in the high-pressure limit without collisions. J Am Chem Soc 118, 10640–10644 (1996)
Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein-ligand interactions preserved in the gas phase. J Am Chem Soc 131, 15980–15981 (2009)
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem Inform 4, 17 (2012)
Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.-Y.: R.E.D. server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39, W511–W517 (2011)
Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., Cieplak, P.: The R.E.D. tools: advances in RESP and ESP charge derivation and force feld library building. Phys Chem Chem Phys 12, 7821–7839 (2010)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr, Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT (2009)
Wu, S.Y., Perez, M.D., Puyol, P., Sawyer, L.: β-lactoglobulin binds palmitate within its central cavity. J Biol Chem 274, 170–174 (1999)
Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A.W., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Wolf, R.M., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe D.R., Mathews D.H., Seetin M.G., Salomon-Ferrer, R., Sagui, C., Babin V., Luchko, T., Gusarov, S., Kovalenko A., Kollman, P.A.: AMBER 12 University of California: San Francisco (2012)
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J Comput Chem 26, 1781–1802 (2005)
Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development of testing of a general amber force field. J Comput Chem 25, 1157–1174 (2004)
Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23, 327–341 (1977)
Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J Molec Graphics 14(1), 33–38 (1996)
Origin: OriginLab, Northampton, MA 01060, USA
Sun, J., Kitova, E.N., Klassen, J.S.: Method for stabilizing protein–ligand complexes in nanoelectrospray ionization mass spectrometry. Anal Chem 79, 416–425 (2007)
Bagal, D., Kitova, E.N., Liu, L., El-Haweit, A., Schnier, P.D., Klassen, J.S.: Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal Chem 81, 7801–7806 (2009)
Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J Am Chem Soc 134, 3054–3060 (2012)
Acknowledgments
The authors are grateful for financial support provided by the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 2763 kb)
Rights and permissions
About this article
Cite this article
Liu, L., Jalili, N., Baergen, A. et al. Fluorine Bonding Enhances the Energetics of Protein-Lipid Binding in the Gas Phase. J. Am. Soc. Mass Spectrom. 25, 751–757 (2014). https://doi.org/10.1007/s13361-014-0837-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13361-014-0837-8