Skip to main content
Log in

Energetics of Intermolecular Hydrogen Bonds in a Hydrophobic Protein Cavity

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry


This work explores the energetics of intermolecular H-bonds inside a hydrophobic protein cavity. Kinetic measurements were performed on the gaseous deprotonated ions (at the −7 charge state) of complexes of bovine β-lactoglobulin (Lg) and three monohydroxylated analogs of palmitic acid (PA): 3-hydroxypalmitic acid (3-OHPA), 7-hydroxypalmitic acid (7-OHPA), and 16-hydroxypalmitic acid (16-OHPA). From the increase in the activation energy for the dissociation of the (Lg + X-OHPA)7– ions, compared with that of the (Lg + PA)7– ion, it is concluded that the –OH groups of the X-OHPA ligands participate in strong (5 – 11 kcal mol–1) intermolecular H-bonds in the hydrophobic cavity of Lg. The results of molecular dynamics (MD) simulations suggest that the –OH groups of 3-OHPA and 16-OHPA act as H-bond donors and interact with backbone carbonyl oxygens, whereas the –OH group of 7-OHPA acts as both H-bond donor and acceptor with nearby side chains. The capacity for intermolecular H-bonds within the Lg cavity, as suggested by the gas-phase measurements, does not necessarily lead to enhanced binding in aqueous solution. The association constant (Ka) measured for 7-OHPA [(2.3 ± 0.2) × 105 M–1] is similar to the value for the PA [(3.8 ± 0.1) × 105 M–1]; Ka for 3-OHPA [(1.1 ± 0.3) × 106 M–1] is approximately three-times larger, whereas Ka for 16-OHPA [(2.3 ± 0.2) × 104 M–1] is an order of magnitude smaller. Taken together, the results of this study suggest that the energetic penalty to desolvating the ligand –OH groups, which is necessary for complex formation, is similar in magnitude to the energetic contribution of the intermolecular H-bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others


  1. Pace, C.N., Shirley, B.A., McNutt, M., Gajiwala, K.: Forces contributing to the conformational stability of proteins. FASEB J. 10, 75–83 (1996)

    CAS  Google Scholar 

  2. Efremov, R.G., Chugunov, A.O., Pyrkov, T.V., Priestle, J.P., Arseniev, A.S., Jacoby, E.: Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 14, 393–415 (2007)

    Article  CAS  Google Scholar 

  3. Meyer, E.E., Rosenberg, K.J., Israelachvili, J.: Recent progress in understanding hydrophobic interactions. Proc. Natl. Acad. Sci. U. S. A. 103, 15739–15746 (2006)

    Article  CAS  Google Scholar 

  4. Wang, R., Lu, Y., Fang, X., Wang, S.: An extensive test of 14 scoring functions using the PDB bind refined set of 800 protein-ligand complexes. J. Chem. Inf. Comp. Sci. 44, 2114–2125 (2004)

    Article  CAS  Google Scholar 

  5. Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., Varma, A.K.: Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 45, e12029 (2010)

    Article  CAS  Google Scholar 

  6. Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., Mainz, D.T.: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem. 49, 6177–6196 (2006)

    Article  CAS  Google Scholar 

  7. Young, T., Abel, R., Kim, B., Berne, B., Friesner, R.A.: Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. U. S. A. 104, 808–813 (2007)

    Article  CAS  Google Scholar 

  8. Kitova, E.N., Bundle, D.R., Klassen, J.S.: Partitioning of solvent effects and intrinsic interactions in biological recognition. Angew. Chem. Int. Ed. 43, 4183–4186 (2004)

    Article  CAS  Google Scholar 

  9. Kitova, E.N., Seo, M., Roy, P.-N., Klassen, J.S.: Elucidating the intermolecular interactions within a desolvated protein–ligand complex. An experimental and computational study. J. Am. Chem. Soc. 130, 1214–1226 (2008)

    Article  CAS  Google Scholar 

  10. Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein–ligand interactions preserved in the gas phase. J. Am. Chem. Soc. 131, 15980–15981 (2009)

    Article  CAS  Google Scholar 

  11. Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Evidence that water can reduce the kinetic stability of protein-hydrophobic ligand interaction. J. Am. Chem. Soc. 132, 17658–17660 (2010)

    Article  CAS  Google Scholar 

  12. Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J. Am. Chem. Soc. 134, 3054–3060 (2012)

    Article  CAS  Google Scholar 

  13. Deng, L., Broom, A., Kitova, E.N., Richards, M.R., Zheng, R.B., Shoemaker, G.K., Meiering, E.M., Klassen, J.S.: Kinetic stability of the streptavidin–biotin interaction enhanced in the gas phase. J. Am. Chem. Soc. 134, 16586–16596 (2012)

    Article  CAS  Google Scholar 

  14. Deng, L., Kitova, E.N., Klassen, J.S.: Dissociation kinetics of the streptavidin-biotin interaction measured using direct electrospray ionization mass spectrometry analysis. J. Am. Soc. Mass Spectrom. 24, 49–56 (2013)

    Article  CAS  Google Scholar 

  15. Kontopidis, G., Holt, C., Sawyer, L.: Invited Review: β-lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87, 785–796 (2004)

    Article  CAS  Google Scholar 

  16. Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, H.M., Baker, E.N., Jameson, G.B.: Structure basis of the Tanford transition of bovine β-lactoglobulin. Biochemistry 37, 14014–14023 (1998)

    Article  CAS  Google Scholar 

  17. Qvist, J., Davidovic, M., Hamelberg, D., Halle, B.: A dry ligand-binding cavity in a solvated protein. Proc. Natl. Acad. Sci. U. S. A. 105, 6296–6301 (2008)

    Article  Google Scholar 

  18. Liu, L., Kitova, E.N., Klassen, J.S.: Quantifying protein-fatty acid interactions using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 310–318 (2011)

    Article  CAS  Google Scholar 

  19. Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient blackbody radiation. Science 279, 194–197 (1998)

    Article  CAS  Google Scholar 

  20. Price, W.D., Schnier, P.D., Jockusch, R.A., Strittmatter, E.R., Williams, E.R.: Unimulecular reaction kinetics in the high-pressure limit without collisoins. J. Am. Chem. Soc. 118, 10640–10644 (1996)

    Article  CAS  Google Scholar 

  21. Sun, J., Kitova, E.N., Klassen, J.S.: Method for stabilizing protein-ligand complexes in nanoelectrospray ionization mass spectrometry. Anal. Chem. 79, 416–425 (2007)

    Article  CAS  Google Scholar 

  22. Bagal, D., Kitova, E.N., Liu, L., El-Haweit, A., Schnier, P.D., Klassen, J.S.: Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal. Chem. 81, 7801–7806 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to John S. Klassen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Plots of the fractional abundance of Lg6− (Ab (Lg6−)/Ab total) versus reaction time measured for the dissociation of (Lg + 3-OHPA)7− ions at (a) 57 °C, (b) 65 °C and (c) 81 °C. Plots of the abundance ratio of Lg6− and Lg7− (Ab (Lg6−)/Ab (Lg7−)) versus reaction time measured for the dissociation of (Lg + 3-OHPA)7− ions at (d) 57 °C, (e) 65 °C and (f) 81 °C. (DOC 380 kb)

Figure S2

Plots of the fractional abundance of Lg6− (Ab (Lg6−)/Ab total) versus reaction time measured for the dissociation of (Lg + 16-OHPA)7− ions at (a) 47 °C, (b) 57 °C, (c) 65 °C and (d) 76 °C. (DOC 298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Baergen, A., Michelsen, K. et al. Energetics of Intermolecular Hydrogen Bonds in a Hydrophobic Protein Cavity. J. Am. Soc. Mass Spectrom. 25, 742–750 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words