Host–Guest Chemistry in the Gas Phase: Complex Formation of Cucurbit[6]uril with Proton-bound Water Dimer

Abstract

The hydration of cucurbit[6]uril (CB[6]) in the gas phase is investigated using electrospray ionization traveling wave ion mobility mass spectrometry (ESI-TWIM-MS). Highly abundant dihydrated and tetrahydrated species of diprotonated CB[6] are found in the ESI-TWIM-MS spectrum. The hydration patterns of the CB[6] ion and the dissociation patterns of the hydrated CB[6] ion indicate that two water molecules are bound to each other, forming a water dimer in the CB[6] complex. Ion mobility studies combined with the structures calculated by density functional theory suggest that the proton-bound water dimer is present as a Zundel-like structure in the CB[6] portal, forming a hydrogen bond network with carbonyl groups of the CB[6]. When a large guest molecule is bound to a CB[6] portal, water molecules cannot bind to the portal. In addition, the strong binding energy of the water dimer blocks the portal, hindering the insertion of the long alkyl chain of the guest molecule into the CB[6] cavity. With small alkali metal cations, such as Li+ and Na+, a single water molecule interacts with the CB[6] portal, forming hydrogen bonds with the carbonyl groups of CB[6]. A highly stable Zundel-like structure of the proton-bound water dimer or a metal-bound water molecule at the CB[6] portal is suggested as an initial hydration process for CB[6], which is only dissolved in aqueous solution with acid or alkali metal ions.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Reference

  1. 1.

    Lee, S.J.C., Lee, J.W., Lee, H.H., Seo, J., Noh, D.H., Ko, Y.H., Kim, K., Kim, H.I.: Host–guest chemistry from solution to the gas phase: an essential role of direct interaction with water for high-affinity binding of Cucurbit[n]urils. J. Phys. Chem. B 117, 8855–8864 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    Mock, W.: Cucurbituril. In: Weber, E. (ed.) Supramolecular Chemistry II—Host Design and Molecular Recognition, pp. 1–24. Springer, Berlin/Heidelberg (1995)

    Google Scholar 

  3. 3.

    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003)

    CAS  Article  Google Scholar 

  4. 4.

    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The Cucurbit[n]uril family. Angew. Chem., Int. Ed. 44, 4844–4870 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    Rekharsky, M.V., Yamamura, H., Inoue, C., Kawai, M., Osaka, I., Arakawa, R., Shiba, K., Sato, A., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Chiral recognition in cucurbituril cavities. J. Am. Chem. Soc. 128, 14871–14880 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    Nau, W.M., Ghale, G., Hennig, A., Bakirci, H., Bailey, D.M.: Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J. Am. Chem. Soc. 131, 11558–11570 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    Gomez-Casado, A., Jonkheijm, P., Huskens, J.: Recognition properties of cucurbit[7]uril self-assembled monolayers studied with force spectroscopy. Langmuir 27, 11508–11513 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    Minami, T., Esipenko, N.A., Zhang, B., Isaacs, L., Nishiyabu, R., Kubo, Y., Anzenbacher, P.: Supramolecular sensor for cancer-associated nitrosamines. J. Am. Chem. Soc. 134, 20021–20024 (2012)

    CAS  Article  Google Scholar 

  10. 10.

    Li, H., Xie, H.N., Cao, Y., Ding, X.R., Yin, Y.M., Li, G.X.: A general way to assay protein by coupling peptide with signal reporter via supermolecule formation. Anal. Chem. 85, 1047–1052 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    Ko, Y.H., Kim, E., Hwang, I., Kim, K.: Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem. Commun. 1305–1315 (2007)

  12. 12.

    Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)

    CAS  Article  Google Scholar 

  13. 13.

    Lim, Y.B., Kim, T., Lee, J.W., Kim, S.-M., Kim, H.-J., Kim, K., Park, J.-S.: Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconj. Chem 13, 1181–1185 (2002))

    CAS  Article  Google Scholar 

  14. 14.

    Kim, S.K., Park, K.M., Singha, K., Kim, J., Ahn, Y., Kim, K., Kim, W.J.: Galactosylated cucurbituril-inclusion polyplex for hepatocyte-targeted gene delivery. Chem. Commun. 46, 692–694 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    Park, K.M., Lee, D.-W., Sarkar, B., Jung, H., Kim, J., Ko, Y.H., Lee, K.E., Jeon, H., Kim, K.: Reduction-sensitive, robust vesicles with a noncovalently modifiable surface as a multifunctional drug-delivery platform. Small 6, 1430–1441 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    Bush, M.E., Bouley, N.D., Urbach, A.R.: Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005)

    CAS  Article  Google Scholar 

  17. 17.

    Reczek, J.J., Kennedy, A.A., Halbert, B.T., Urbach, A.R.: Multivalent recognition of peptides by modular self-assembled receptors. J. Am. Chem. Soc. 131, 2408–2415 (2009)

    CAS  Article  Google Scholar 

  18. 18.

    Urbach, A.R., Ramalingam, V.: Molecular recognition of amino acids, peptides, and proteins by cucurbit[n]uril receptors. J. Chem. Isr. 51, 664–678 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    Chinai, J.M., Taylor, A.B., Ryno, L.M., Hargreaves, N.D., Morris, C.A., Hart, P.J., Urbach, A.R.: Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    Lee, T.C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grun, C.H., Janis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376–382 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    Choi, T.S., Ko, J.Y., Heo, S.W., Ko, Y.H., Kim, K., Kim, H.I.: Unusual complex formation and chemical reaction of haloacetate anion on the exterior surface of cucurbit[6]uril in the gas phase. J. Am. Soc. Mass Spectrom. 23, 1786–1793 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    Heo, S.W., Choi, T.S., Park, K.M., Ko, Y.H., Kim, S.B., Kim, K., Kim, H.I.: Host–guest chemistry in the gas phase: selected fragmentations of cb[6]-peptide complexes at lysine residues and its utility to probe the structures of small proteins. Anal. Chem. 83, 7916–7923 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    Lee, J.W., Heo, S.W., Lee, S.J.C., Ko, J.Y., Kim, H., Kim, H.I.: Probing conformational changes of ubiquitin by host–guest chemistry using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 21–29 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    Kim, Y., Kim, H., Ko, Y.H., Selvapalam, N., Rekharsky, M.V., Inoue, Y., Kim, K.: Complexation of aliphatic ammonium ions with a water-soluble cucurbit[6]uril derivative in pure water: isothermal calorimetric, NMR, and X-ray crystallographic study. Chem. Eur. J. 15, 6143–6151 (2009)

    Google Scholar 

  25. 25.

    Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., De Simone, A.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    Buschmann, H.J., Jansen, K., Schollmeyer, E.: Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim. Acta 346, 33–36 (2000)

    CAS  Article  Google Scholar 

  27. 27.

    Mock, W.L., Shih, N.Y.: Host–guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)

    CAS  Article  Google Scholar 

  28. 28.

    Mock, W.L., Shih, N.Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986)

    CAS  Article  Google Scholar 

  29. 29.

    Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    CAS  Article  Google Scholar 

  30. 30.

    Rekharsky, M.V., Yamamura, H., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. Chem. Commun. 19, 2236–2238 (2008)

    Google Scholar 

  31. 31.

    Buschmann, H.J., Jansen, K., Meschke, C., Schollmeyer, E.: Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution. J. Sol. Chem. 27, 135–140 (1998)

    CAS  Article  Google Scholar 

  32. 32.

    Márquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host−guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004)

    Article  Google Scholar 

  33. 33.

    Zhao, J., Kim, H.-J., Oh, J., Kim, S.-Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem., Int. Ed. 40, 4233–4235 (2001)

    CAS  Article  Google Scholar 

  34. 34.

    Kohtani, M., Breaux, G.A., Jarrold, M.F.: Water molecule adsorption on protonated dipeptides. J. Am. Chem. Soc. 126, 1206–1213 (2004)

    CAS  Article  Google Scholar 

  35. 35.

    Liu, D.F., Wyttenbach, T., Barran, P.E., Bowers, M.T.: Sequential hydration of small protonated peptides. J. Am. Chem. Soc. 125, 8458–8464 (2003)

    CAS  Article  Google Scholar 

  36. 36.

    Liu, D.F., Wyttenbach, T., Carpenter, C.J., Bowers, M.T.: Investigation of noncovalent interactions in deprotonated peptides: structural and energetic competition between aggregation and hydration. J. Am. Chem. Soc. 126, 3261–3270 (2004)

    CAS  Article  Google Scholar 

  37. 37.

    Wyttenbach, T., Liu, D.F., Bowers, M.T.: Hydration of small peptides. Int. J. Mass Spectrom. 240, 221–232 (2005)

    CAS  Article  Google Scholar 

  38. 38.

    Kohtani, M., Jarrold, M.F.: The initial steps in the hydration of unsolvated peptides: water molecule adsorption on alanine-based helices and globules. J. Am. Chem. Soc. 124, 11148–11158 (2002)

    CAS  Article  Google Scholar 

  39. 39.

    Jockusch, R.A., Lemoff, A.S., Williams, E.R.: Hydration of valine-cation complexes in the gas phase: on the number of water molecules necessary to form a zwitterion. J. Phys. Chem. A 105, 10929–10942 (2001)

    CAS  Article  Google Scholar 

  40. 40.

    Jockusch, R.A., Lemoff, A.S., Williams, E.R.: Effect of metal ion and water coordination on the structure of a gas-phase amino acid. J. Am. Chem. Soc. 123, 12255–12265 (2001)

    CAS  Article  Google Scholar 

  41. 41.

    Lemoff, A.S., Williams, E.R.: Binding energies of water to lithiated valine: formation of solution-phase structure in vacuo. J. Am. Soc. Mass Spectrom. 15, 1014–1024 (2004)

    CAS  Article  Google Scholar 

  42. 42.

    Lemoff, A.S., Bush, M.F., Williams, E.R.: Binding energies of water to sodiated valine and structural isomers in the gas phase: the effect of proton affinity on zwitterion stability. J. Am. Chem. Soc. 125, 13576–13584 (2003)

    CAS  Article  Google Scholar 

  43. 43.

    Lemoff, A.S., Bush, M.F., Wu, C.C., Williams, E.R.: Structures and hydration enthalpies of cationized glutamine and structural analogues in the gas phase. J. Am. Chem. Soc. 127, 10276–10286 (2005)

    CAS  Article  Google Scholar 

  44. 44.

    Lemoff, A.S., Wu, C.C., Bush, M.F., Williams, E.R.: Binding energies of water to doubly hydrated cationized glutamine and structural analogues in the gas phase. J. Phys. Chem. A 110, 3662–3669 (2006)

    CAS  Article  Google Scholar 

  45. 45.

    Lee, S.W., Freivogel, P., Schindler, T., Beauchamp, J.L.: Freeze-dried biomolecules: FT-ICR studies of the specific solvation of functional groups and clathrate formation observed by the slow evaporation of water from hydrated peptides and model compounds in the gas phase. J. Am. Chem. Soc. 120, 11758–11765 (1998)

    CAS  Article  Google Scholar 

  46. 46.

    Lee, S.W., Chang, S.B., Kossakovski, D., Cox, H., Beauchamp, J.L.: Slow evaporation of water from hydrated salen transition metal complexes in the gas phase reveals details of metal ligand interactions. J. Am. Chem. Soc. 121, 10152–10156 (1999)

    CAS  Article  Google Scholar 

  47. 47.

    Lee, S.W., Cox, H., Goddard, W.A., Beauchamp, J.L.: Chemistry in nanodroplets: studies of protonation sites of substituted anilines in water clusters using FT-ICR. J. Am. Chem. Soc. 122, 9201–9205 (2000)

    CAS  Article  Google Scholar 

  48. 48.

    Kamariotis, A., Boyarkin, O.V., Mercier, S.R., Beck, R.D., Bush, M.F., Williams, E.R., Rizzo, T.R.: Infrared spectroscopy of hydrated amino acids in the gas phase: protonated and lithiated valine. J. Am. Chem. Soc. 128, 905–916 (2006)

    CAS  Article  Google Scholar 

  49. 49.

    Wu, C.C., Chaudhuri, C., Jiang, J.C., Lee, Y.T., Chang, H.C.: Hydration-induced conformational changes in protonated 2,4-pentanedione in the gas phase. Mol. Phys. 101, 1285–1295 (2003)

    CAS  Article  Google Scholar 

  50. 50.

    Carcabal, P., Kroemer, R.T., Snoek, L.C., Simons, J.P., Bakker, J.M., Compagnon, I., Meijer, G., von Helden, G.: Hydrated complexes of tryptophan: ion dip infrared spectroscopy in the 'molecular fingerprint' region, 100–2000 cm–1. Phys. Chem. Chem. Phys. 6, 4546–4552 (2004)

    CAS  Article  Google Scholar 

  51. 51.

    Demireva, M., O’Brien, J.T., Williams, E.R.: Water-induced folding of 1,7-diammoniumheptane. J. Am. Chem. Soc. 134, 11216–11224 (2012)

    CAS  Article  Google Scholar 

  52. 52.

    Ye, S.J., Moision, R.M., Armentrout, P.B.: Sequential bond energies of water to sodium glycine cation. Int. J. Mass Spectrom. 240, 233–248 (2005)

    CAS  Article  Google Scholar 

  53. 53.

    Ye, S.J., Armentrout, P.B.: Guided ion beam and theoretical studies of sequential bond energies of water to sodium cysteine cation. Phys. Chem. Chem. Phys. 12, 13419–13433 (2010)

    CAS  Article  Google Scholar 

  54. 54.

    Ye, S.J., Moision, R.M., Armentrout, P.B.: Sequential bond energies of water to sodium proline cation. Int. J. Mass Spectrom. 253, 288–304 (2006)

    CAS  Article  Google Scholar 

  55. 55.

    Yang, Z., Rannulu, N.S., Chu, Y., Rodgers, M.T.: Bond dissociation energies and equilibrium structures of Cu+(MeOH)x, x = 1–6, in the gas phase: competition between solvation of the metal ion and hydrogen-bonding interactions. J. Phys. Chem. A 112, 388–401 (2008)

    CAS  Article  Google Scholar 

  56. 56.

    Vitale, G., Valina, A.B., Huang, H., Amunugama, R., Rodgers, M.T.: Solvation of copper ions by acetonitrile. Structures and sequential binding energies of Cu+(CH3CN)x, x = 1–5, from collision-induced dissociation and theoretical studies. J. Phys Chem. A 105, 11351–11364 (2001)

    CAS  Article  Google Scholar 

  57. 57.

    Rannulu, N.S., Rodgers, M.T.: Solvation of copper ions by imidazole: structures and sequential binding energies of Cu+(imidazole)x, x = 1–4. Competition between ion solvation and hydrogen bonding. Phys. Chem. Chem. Phys. 7, 1014–1025 (2005)

    CAS  Article  Google Scholar 

  58. 58.

    Chu, Y., Yang, Z., Rodgers, M.T.: Solvation of copper ions by acetone. Structures and sequential binding energies of Cu+(acetone)x, x = 1–4 from collision-induced dissociation and theoretical studies. J. Am. Soc. Mass Spectrom. 13, 453–468 (2002)

    CAS  Article  Google Scholar 

  59. 59.

    Wincel, H.: Hydration of gas-phase protonated alkylamines, amino acids and dipeptides produced by electrospray. Int. J. Mass Spectrom. 251, 23–31 (2006)

    CAS  Article  Google Scholar 

  60. 60.

    Meot-Ner, M., Elmore, D.E., Scheiner, S.: Ionic hydrogen bond effects on the acidities, basicities, solvation, solvent bridging, and self-assembly of carboxylic groups. J. Am. Chem. Soc. 121, 7625–7635 (1999)

    CAS  Article  Google Scholar 

  61. 61.

    Meot-Ner, M., Scheiner, S., Yu, W.O.: Ionic hydrogen bonds in bioenergetics. 3. Proton transport in membranes, modeled by ketone/water clusters. J. Am. Chem. Soc. 120, 6980–6990 (1998)

    CAS  Article  Google Scholar 

  62. 62.

    Meot-ner, M., Sieck, L.W., Scheiner, S., Duan, X.F.: The ionic hydrogen-bond . 5. Polydentate and solvent-bridged structures—complexing of the proton and the hydronium ion by polyethers. J. Am. Chem. Soc. 116, 7848–7856 (1994)

    CAS  Article  Google Scholar 

  63. 63.

    Wyttenbach, T., Bowers, M.T.: Hydration of biomolecules. Chem. Phys. Lett. 480, 1–16 (2009)

    CAS  Article  Google Scholar 

  64. 64.

    Mautner, M.M.N., Elmore, D.E., Scheiner, S.: Ionic hydrogen bond effects on the acidities, basicities, solvation, solvent bridging, and self-assembly of carboxylic groups. J. Am. Chem. Soc. 121, 7625–7635 (1999)

    Article  Google Scholar 

  65. 65.

    Meot-Ner, M.: The ionic hydrogen bond. Chem. Rev. 105, 213–284 (2005)

    CAS  Article  Google Scholar 

  66. 66.

    Grimm, R.L., Hodyss, R., Beauchamp, J.L.: Probing interfacial chemistry of single droplets with field-induced droplet ionization mass spectrometry: physical adsorption of polycyclic aromatic hydrocarbons and ozonolysis of oleic acid and related compounds. Anal. Chem. 78, 3800–3806 (2006)

    CAS  Article  Google Scholar 

  67. 67.

    Hobson, J.P.: Fifty years of vacuum science. J. Vac. Sci. Technol. A 21, S7–S11 (2003)

    Google Scholar 

  68. 68.

    Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H.: Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal. Chem. 81, 248–254 (2009)

    CAS  Article  Google Scholar 

  69. 69.

    Available at: www.indiana.edu/~clemmer. Accessed 23 Dec 2013

  70. 70.

    Wyttenbach, T., von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)

    CAS  Article  Google Scholar 

  71. 71.

    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    CAS  Article  Google Scholar 

  72. 72.

    Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert, A.T.B., Slipchenko, L.V., Levchenko, S.V., O'Neill, D.P., DiStasio Jr., R.A., Lochan, R.C., Wang, T., Beran, G.J.O., Besley, N.A., Herbert, J.M., Lin, C.Y., Van Voorhis, T., Chien, S.H., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath, P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F.C., Dachsel, H., Doerksen, R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden, A., Hirata, S., Hsu, C.-P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M., Lee, M.S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A., Rhee, Y.M., Ritchie, J., Rosta, E., Sherrill, C.D., Simmonett, A.C., Subotnik, J.E., Woodcock III, H.L., Zhang, W., Bell, A.T., Chakraborty, A.K., Chipman, D.M., Keil, F.J., Warshel, A., Hehre, W.J., Schaefer III, H.F., Kong, J., Krylov, A.I., Gill, P.M.W., Head-Gordon, M.: Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006)

    CAS  Article  Google Scholar 

  73. 73.

    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    CAS  Article  Google Scholar 

  74. 74.

    Hariharan, P.C., Pople, J.A.: The effect of d-functions on molecular orbital energies for hydrocarbons. Chem. Phys. Lett. 16, 217–219 (1972)

    CAS  Article  Google Scholar 

  75. 75.

    Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)

    CAS  Article  Google Scholar 

  76. 76.

    Dearden, D.V., Ferrell, T.A., Asplund, M.C., Zilch, L.W., Julian, R.R., Jarrold, M.F.: One ring to bind them all: shape-selective complexation of phenylenediamine isomers with cucurbit[6]uril in the gas phase. J. Phys. Chem. A 113, 989–997 (2009)

    CAS  Article  Google Scholar 

  77. 77.

    Yang, F., Voelkel, J.E., Dearden, D.V.: Collision cross sectional areas from analysis of fourier transform ion cyclotron resonance line width: a new method for characterizing molecular structure. Anal. Chem. 84, 4851–4857 (2012)

    CAS  Article  Google Scholar 

  78. 78.

    Kim, H.I., Beauchamp, J.L.: Cluster phase chemistry: collisions of vibrationally excited cationic dicarboxylic acid clusters with water molecules initiate dissociation of cluster components. J. Phys. Chem. A 111, 5954–5967 (2007)

    CAS  Article  Google Scholar 

  79. 79.

    Kim, H.I., Goddard, W.A., Beauchamp, J.L.: Cluster phase chemistry: gas-phase reactions of anionic sodium salts of dicarboxylic acid clusters with water molecules. J. Phys. Chem. A 110, 7777–7786 (2006)

    CAS  Article  Google Scholar 

  80. 80.

    Jeon, Y.-M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)

    CAS  Article  Google Scholar 

  81. 81.

    Nau, W.M., Florea, M., Assaf, K.I.: Deep Inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host–guest complexation. Isr. J. Chem. 51, 559–577 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Basic Science Research (HIK; grant 2013R1A1A2008974) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, and Future Planning (MSIP). This work was also supported by the POSTECH Basic Science Research Institute Grant. S.J.C.L. is supported by NRF grant funded by the Korean Government (NRF-2011-Global Ph.D. Fellowship program).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hugh I. Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1754 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Noh, D.H., Lee, S.J.C., Lee, J.W. et al. Host–Guest Chemistry in the Gas Phase: Complex Formation of Cucurbit[6]uril with Proton-bound Water Dimer. J. Am. Soc. Mass Spectrom. 25, 410–421 (2014). https://doi.org/10.1007/s13361-013-0795-6

Download citation

Key words

  • Cucurbit[6]uril
  • Hydration
  • Zundel structure
  • Host–guest chemistry
  • Ion mobility mass spectrometry