Advertisement

Host–Guest Chemistry in the Gas Phase: Complex Formation of Cucurbit[6]uril with Proton-bound Water Dimer

  • Dong Hun Noh
  • Shin Jung C. Lee
  • Jong Wha Lee
  • Hugh I. KimEmail author
Research Article

Abstract

The hydration of cucurbit[6]uril (CB[6]) in the gas phase is investigated using electrospray ionization traveling wave ion mobility mass spectrometry (ESI-TWIM-MS). Highly abundant dihydrated and tetrahydrated species of diprotonated CB[6] are found in the ESI-TWIM-MS spectrum. The hydration patterns of the CB[6] ion and the dissociation patterns of the hydrated CB[6] ion indicate that two water molecules are bound to each other, forming a water dimer in the CB[6] complex. Ion mobility studies combined with the structures calculated by density functional theory suggest that the proton-bound water dimer is present as a Zundel-like structure in the CB[6] portal, forming a hydrogen bond network with carbonyl groups of the CB[6]. When a large guest molecule is bound to a CB[6] portal, water molecules cannot bind to the portal. In addition, the strong binding energy of the water dimer blocks the portal, hindering the insertion of the long alkyl chain of the guest molecule into the CB[6] cavity. With small alkali metal cations, such as Li+ and Na+, a single water molecule interacts with the CB[6] portal, forming hydrogen bonds with the carbonyl groups of CB[6]. A highly stable Zundel-like structure of the proton-bound water dimer or a metal-bound water molecule at the CB[6] portal is suggested as an initial hydration process for CB[6], which is only dissolved in aqueous solution with acid or alkali metal ions.

Key words

Cucurbit[6]uril Hydration Zundel structure Host–guest chemistry Ion mobility mass spectrometry 

Notes

Acknowledgment

This work was supported by Basic Science Research (HIK; grant 2013R1A1A2008974) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, and Future Planning (MSIP). This work was also supported by the POSTECH Basic Science Research Institute Grant. S.J.C.L. is supported by NRF grant funded by the Korean Government (NRF-2011-Global Ph.D. Fellowship program).

Supplementary material

13361_2013_795_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1754 kb)

Reference

  1. 1.
    Lee, S.J.C., Lee, J.W., Lee, H.H., Seo, J., Noh, D.H., Ko, Y.H., Kim, K., Kim, H.I.: Host–guest chemistry from solution to the gas phase: an essential role of direct interaction with water for high-affinity binding of Cucurbit[n]urils. J. Phys. Chem. B 117, 8855–8864 (2013)CrossRefGoogle Scholar
  2. 2.
    Mock, W.: Cucurbituril. In: Weber, E. (ed.) Supramolecular Chemistry II—Host Design and Molecular Recognition, pp. 1–24. Springer, Berlin/Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003)CrossRefGoogle Scholar
  4. 4.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The Cucurbit[n]uril family. Angew. Chem., Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  5. 5.
    Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007)CrossRefGoogle Scholar
  6. 6.
    Rekharsky, M.V., Yamamura, H., Inoue, C., Kawai, M., Osaka, I., Arakawa, R., Shiba, K., Sato, A., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Chiral recognition in cucurbituril cavities. J. Am. Chem. Soc. 128, 14871–14880 (2006)CrossRefGoogle Scholar
  7. 7.
    Nau, W.M., Ghale, G., Hennig, A., Bakirci, H., Bailey, D.M.: Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J. Am. Chem. Soc. 131, 11558–11570 (2009)CrossRefGoogle Scholar
  8. 8.
    Gomez-Casado, A., Jonkheijm, P., Huskens, J.: Recognition properties of cucurbit[7]uril self-assembled monolayers studied with force spectroscopy. Langmuir 27, 11508–11513 (2011)CrossRefGoogle Scholar
  9. 9.
    Minami, T., Esipenko, N.A., Zhang, B., Isaacs, L., Nishiyabu, R., Kubo, Y., Anzenbacher, P.: Supramolecular sensor for cancer-associated nitrosamines. J. Am. Chem. Soc. 134, 20021–20024 (2012)CrossRefGoogle Scholar
  10. 10.
    Li, H., Xie, H.N., Cao, Y., Ding, X.R., Yin, Y.M., Li, G.X.: A general way to assay protein by coupling peptide with signal reporter via supermolecule formation. Anal. Chem. 85, 1047–1052 (2013)CrossRefGoogle Scholar
  11. 11.
    Ko, Y.H., Kim, E., Hwang, I., Kim, K.: Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem. Commun. 1305–1315 (2007)Google Scholar
  12. 12.
    Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)CrossRefGoogle Scholar
  13. 13.
    Lim, Y.B., Kim, T., Lee, J.W., Kim, S.-M., Kim, H.-J., Kim, K., Park, J.-S.: Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconj. Chem 13, 1181–1185 (2002))CrossRefGoogle Scholar
  14. 14.
    Kim, S.K., Park, K.M., Singha, K., Kim, J., Ahn, Y., Kim, K., Kim, W.J.: Galactosylated cucurbituril-inclusion polyplex for hepatocyte-targeted gene delivery. Chem. Commun. 46, 692–694 (2010)CrossRefGoogle Scholar
  15. 15.
    Park, K.M., Lee, D.-W., Sarkar, B., Jung, H., Kim, J., Ko, Y.H., Lee, K.E., Jeon, H., Kim, K.: Reduction-sensitive, robust vesicles with a noncovalently modifiable surface as a multifunctional drug-delivery platform. Small 6, 1430–1441 (2010)CrossRefGoogle Scholar
  16. 16.
    Bush, M.E., Bouley, N.D., Urbach, A.R.: Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005)CrossRefGoogle Scholar
  17. 17.
    Reczek, J.J., Kennedy, A.A., Halbert, B.T., Urbach, A.R.: Multivalent recognition of peptides by modular self-assembled receptors. J. Am. Chem. Soc. 131, 2408–2415 (2009)CrossRefGoogle Scholar
  18. 18.
    Urbach, A.R., Ramalingam, V.: Molecular recognition of amino acids, peptides, and proteins by cucurbit[n]uril receptors. J. Chem. Isr. 51, 664–678 (2011)CrossRefGoogle Scholar
  19. 19.
    Chinai, J.M., Taylor, A.B., Ryno, L.M., Hargreaves, N.D., Morris, C.A., Hart, P.J., Urbach, A.R.: Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011)CrossRefGoogle Scholar
  20. 20.
    Lee, T.C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grun, C.H., Janis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376–382 (2013)CrossRefGoogle Scholar
  21. 21.
    Choi, T.S., Ko, J.Y., Heo, S.W., Ko, Y.H., Kim, K., Kim, H.I.: Unusual complex formation and chemical reaction of haloacetate anion on the exterior surface of cucurbit[6]uril in the gas phase. J. Am. Soc. Mass Spectrom. 23, 1786–1793 (2012)CrossRefGoogle Scholar
  22. 22.
    Heo, S.W., Choi, T.S., Park, K.M., Ko, Y.H., Kim, S.B., Kim, K., Kim, H.I.: Host–guest chemistry in the gas phase: selected fragmentations of cb[6]-peptide complexes at lysine residues and its utility to probe the structures of small proteins. Anal. Chem. 83, 7916–7923 (2011)CrossRefGoogle Scholar
  23. 23.
    Lee, J.W., Heo, S.W., Lee, S.J.C., Ko, J.Y., Kim, H., Kim, H.I.: Probing conformational changes of ubiquitin by host–guest chemistry using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 21–29 (2013)CrossRefGoogle Scholar
  24. 24.
    Kim, Y., Kim, H., Ko, Y.H., Selvapalam, N., Rekharsky, M.V., Inoue, Y., Kim, K.: Complexation of aliphatic ammonium ions with a water-soluble cucurbit[6]uril derivative in pure water: isothermal calorimetric, NMR, and X-ray crystallographic study. Chem. Eur. J. 15, 6143–6151 (2009)Google Scholar
  25. 25.
    Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., De Simone, A.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012)CrossRefGoogle Scholar
  26. 26.
    Buschmann, H.J., Jansen, K., Schollmeyer, E.: Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim. Acta 346, 33–36 (2000)CrossRefGoogle Scholar
  27. 27.
    Mock, W.L., Shih, N.Y.: Host–guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)CrossRefGoogle Scholar
  28. 28.
    Mock, W.L., Shih, N.Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986)CrossRefGoogle Scholar
  29. 29.
    Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)CrossRefGoogle Scholar
  30. 30.
    Rekharsky, M.V., Yamamura, H., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. Chem. Commun. 19, 2236–2238 (2008)Google Scholar
  31. 31.
    Buschmann, H.J., Jansen, K., Meschke, C., Schollmeyer, E.: Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution. J. Sol. Chem. 27, 135–140 (1998)CrossRefGoogle Scholar
  32. 32.
    Márquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host−guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004)CrossRefGoogle Scholar
  33. 33.
    Zhao, J., Kim, H.-J., Oh, J., Kim, S.-Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem., Int. Ed. 40, 4233–4235 (2001)CrossRefGoogle Scholar
  34. 34.
    Kohtani, M., Breaux, G.A., Jarrold, M.F.: Water molecule adsorption on protonated dipeptides. J. Am. Chem. Soc. 126, 1206–1213 (2004)CrossRefGoogle Scholar
  35. 35.
    Liu, D.F., Wyttenbach, T., Barran, P.E., Bowers, M.T.: Sequential hydration of small protonated peptides. J. Am. Chem. Soc. 125, 8458–8464 (2003)CrossRefGoogle Scholar
  36. 36.
    Liu, D.F., Wyttenbach, T., Carpenter, C.J., Bowers, M.T.: Investigation of noncovalent interactions in deprotonated peptides: structural and energetic competition between aggregation and hydration. J. Am. Chem. Soc. 126, 3261–3270 (2004)CrossRefGoogle Scholar
  37. 37.
    Wyttenbach, T., Liu, D.F., Bowers, M.T.: Hydration of small peptides. Int. J. Mass Spectrom. 240, 221–232 (2005)CrossRefGoogle Scholar
  38. 38.
    Kohtani, M., Jarrold, M.F.: The initial steps in the hydration of unsolvated peptides: water molecule adsorption on alanine-based helices and globules. J. Am. Chem. Soc. 124, 11148–11158 (2002)CrossRefGoogle Scholar
  39. 39.
    Jockusch, R.A., Lemoff, A.S., Williams, E.R.: Hydration of valine-cation complexes in the gas phase: on the number of water molecules necessary to form a zwitterion. J. Phys. Chem. A 105, 10929–10942 (2001)CrossRefGoogle Scholar
  40. 40.
    Jockusch, R.A., Lemoff, A.S., Williams, E.R.: Effect of metal ion and water coordination on the structure of a gas-phase amino acid. J. Am. Chem. Soc. 123, 12255–12265 (2001)CrossRefGoogle Scholar
  41. 41.
    Lemoff, A.S., Williams, E.R.: Binding energies of water to lithiated valine: formation of solution-phase structure in vacuo. J. Am. Soc. Mass Spectrom. 15, 1014–1024 (2004)CrossRefGoogle Scholar
  42. 42.
    Lemoff, A.S., Bush, M.F., Williams, E.R.: Binding energies of water to sodiated valine and structural isomers in the gas phase: the effect of proton affinity on zwitterion stability. J. Am. Chem. Soc. 125, 13576–13584 (2003)CrossRefGoogle Scholar
  43. 43.
    Lemoff, A.S., Bush, M.F., Wu, C.C., Williams, E.R.: Structures and hydration enthalpies of cationized glutamine and structural analogues in the gas phase. J. Am. Chem. Soc. 127, 10276–10286 (2005)CrossRefGoogle Scholar
  44. 44.
    Lemoff, A.S., Wu, C.C., Bush, M.F., Williams, E.R.: Binding energies of water to doubly hydrated cationized glutamine and structural analogues in the gas phase. J. Phys. Chem. A 110, 3662–3669 (2006)CrossRefGoogle Scholar
  45. 45.
    Lee, S.W., Freivogel, P., Schindler, T., Beauchamp, J.L.: Freeze-dried biomolecules: FT-ICR studies of the specific solvation of functional groups and clathrate formation observed by the slow evaporation of water from hydrated peptides and model compounds in the gas phase. J. Am. Chem. Soc. 120, 11758–11765 (1998)CrossRefGoogle Scholar
  46. 46.
    Lee, S.W., Chang, S.B., Kossakovski, D., Cox, H., Beauchamp, J.L.: Slow evaporation of water from hydrated salen transition metal complexes in the gas phase reveals details of metal ligand interactions. J. Am. Chem. Soc. 121, 10152–10156 (1999)CrossRefGoogle Scholar
  47. 47.
    Lee, S.W., Cox, H., Goddard, W.A., Beauchamp, J.L.: Chemistry in nanodroplets: studies of protonation sites of substituted anilines in water clusters using FT-ICR. J. Am. Chem. Soc. 122, 9201–9205 (2000)CrossRefGoogle Scholar
  48. 48.
    Kamariotis, A., Boyarkin, O.V., Mercier, S.R., Beck, R.D., Bush, M.F., Williams, E.R., Rizzo, T.R.: Infrared spectroscopy of hydrated amino acids in the gas phase: protonated and lithiated valine. J. Am. Chem. Soc. 128, 905–916 (2006)CrossRefGoogle Scholar
  49. 49.
    Wu, C.C., Chaudhuri, C., Jiang, J.C., Lee, Y.T., Chang, H.C.: Hydration-induced conformational changes in protonated 2,4-pentanedione in the gas phase. Mol. Phys. 101, 1285–1295 (2003)CrossRefGoogle Scholar
  50. 50.
    Carcabal, P., Kroemer, R.T., Snoek, L.C., Simons, J.P., Bakker, J.M., Compagnon, I., Meijer, G., von Helden, G.: Hydrated complexes of tryptophan: ion dip infrared spectroscopy in the 'molecular fingerprint' region, 100–2000 cm–1. Phys. Chem. Chem. Phys. 6, 4546–4552 (2004)CrossRefGoogle Scholar
  51. 51.
    Demireva, M., O’Brien, J.T., Williams, E.R.: Water-induced folding of 1,7-diammoniumheptane. J. Am. Chem. Soc. 134, 11216–11224 (2012)CrossRefGoogle Scholar
  52. 52.
    Ye, S.J., Moision, R.M., Armentrout, P.B.: Sequential bond energies of water to sodium glycine cation. Int. J. Mass Spectrom. 240, 233–248 (2005)CrossRefGoogle Scholar
  53. 53.
    Ye, S.J., Armentrout, P.B.: Guided ion beam and theoretical studies of sequential bond energies of water to sodium cysteine cation. Phys. Chem. Chem. Phys. 12, 13419–13433 (2010)CrossRefGoogle Scholar
  54. 54.
    Ye, S.J., Moision, R.M., Armentrout, P.B.: Sequential bond energies of water to sodium proline cation. Int. J. Mass Spectrom. 253, 288–304 (2006)CrossRefGoogle Scholar
  55. 55.
    Yang, Z., Rannulu, N.S., Chu, Y., Rodgers, M.T.: Bond dissociation energies and equilibrium structures of Cu+(MeOH)x, x = 1–6, in the gas phase: competition between solvation of the metal ion and hydrogen-bonding interactions. J. Phys. Chem. A 112, 388–401 (2008)CrossRefGoogle Scholar
  56. 56.
    Vitale, G., Valina, A.B., Huang, H., Amunugama, R., Rodgers, M.T.: Solvation of copper ions by acetonitrile. Structures and sequential binding energies of Cu+(CH3CN)x, x = 1–5, from collision-induced dissociation and theoretical studies. J. Phys Chem. A 105, 11351–11364 (2001)CrossRefGoogle Scholar
  57. 57.
    Rannulu, N.S., Rodgers, M.T.: Solvation of copper ions by imidazole: structures and sequential binding energies of Cu+(imidazole)x, x = 1–4. Competition between ion solvation and hydrogen bonding. Phys. Chem. Chem. Phys. 7, 1014–1025 (2005)CrossRefGoogle Scholar
  58. 58.
    Chu, Y., Yang, Z., Rodgers, M.T.: Solvation of copper ions by acetone. Structures and sequential binding energies of Cu+(acetone)x, x = 1–4 from collision-induced dissociation and theoretical studies. J. Am. Soc. Mass Spectrom. 13, 453–468 (2002)CrossRefGoogle Scholar
  59. 59.
    Wincel, H.: Hydration of gas-phase protonated alkylamines, amino acids and dipeptides produced by electrospray. Int. J. Mass Spectrom. 251, 23–31 (2006)CrossRefGoogle Scholar
  60. 60.
    Meot-Ner, M., Elmore, D.E., Scheiner, S.: Ionic hydrogen bond effects on the acidities, basicities, solvation, solvent bridging, and self-assembly of carboxylic groups. J. Am. Chem. Soc. 121, 7625–7635 (1999)CrossRefGoogle Scholar
  61. 61.
    Meot-Ner, M., Scheiner, S., Yu, W.O.: Ionic hydrogen bonds in bioenergetics. 3. Proton transport in membranes, modeled by ketone/water clusters. J. Am. Chem. Soc. 120, 6980–6990 (1998)CrossRefGoogle Scholar
  62. 62.
    Meot-ner, M., Sieck, L.W., Scheiner, S., Duan, X.F.: The ionic hydrogen-bond . 5. Polydentate and solvent-bridged structures—complexing of the proton and the hydronium ion by polyethers. J. Am. Chem. Soc. 116, 7848–7856 (1994)CrossRefGoogle Scholar
  63. 63.
    Wyttenbach, T., Bowers, M.T.: Hydration of biomolecules. Chem. Phys. Lett. 480, 1–16 (2009)CrossRefGoogle Scholar
  64. 64.
    Mautner, M.M.N., Elmore, D.E., Scheiner, S.: Ionic hydrogen bond effects on the acidities, basicities, solvation, solvent bridging, and self-assembly of carboxylic groups. J. Am. Chem. Soc. 121, 7625–7635 (1999)CrossRefGoogle Scholar
  65. 65.
    Meot-Ner, M.: The ionic hydrogen bond. Chem. Rev. 105, 213–284 (2005)CrossRefGoogle Scholar
  66. 66.
    Grimm, R.L., Hodyss, R., Beauchamp, J.L.: Probing interfacial chemistry of single droplets with field-induced droplet ionization mass spectrometry: physical adsorption of polycyclic aromatic hydrocarbons and ozonolysis of oleic acid and related compounds. Anal. Chem. 78, 3800–3806 (2006)CrossRefGoogle Scholar
  67. 67.
    Hobson, J.P.: Fifty years of vacuum science. J. Vac. Sci. Technol. A 21, S7–S11 (2003)Google Scholar
  68. 68.
    Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H.: Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal. Chem. 81, 248–254 (2009)CrossRefGoogle Scholar
  69. 69.
    Available at: www.indiana.edu/~clemmer. Accessed 23 Dec 2013Google Scholar
  70. 70.
    Wyttenbach, T., von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)CrossRefGoogle Scholar
  71. 71.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  72. 72.
    Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert, A.T.B., Slipchenko, L.V., Levchenko, S.V., O'Neill, D.P., DiStasio Jr., R.A., Lochan, R.C., Wang, T., Beran, G.J.O., Besley, N.A., Herbert, J.M., Lin, C.Y., Van Voorhis, T., Chien, S.H., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath, P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F.C., Dachsel, H., Doerksen, R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden, A., Hirata, S., Hsu, C.-P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M., Lee, M.S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A., Rhee, Y.M., Ritchie, J., Rosta, E., Sherrill, C.D., Simmonett, A.C., Subotnik, J.E., Woodcock III, H.L., Zhang, W., Bell, A.T., Chakraborty, A.K., Chipman, D.M., Keil, F.J., Warshel, A., Hehre, W.J., Schaefer III, H.F., Kong, J., Krylov, A.I., Gill, P.M.W., Head-Gordon, M.: Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006)CrossRefGoogle Scholar
  73. 73.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  74. 74.
    Hariharan, P.C., Pople, J.A.: The effect of d-functions on molecular orbital energies for hydrocarbons. Chem. Phys. Lett. 16, 217–219 (1972)CrossRefGoogle Scholar
  75. 75.
    Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)CrossRefGoogle Scholar
  76. 76.
    Dearden, D.V., Ferrell, T.A., Asplund, M.C., Zilch, L.W., Julian, R.R., Jarrold, M.F.: One ring to bind them all: shape-selective complexation of phenylenediamine isomers with cucurbit[6]uril in the gas phase. J. Phys. Chem. A 113, 989–997 (2009)CrossRefGoogle Scholar
  77. 77.
    Yang, F., Voelkel, J.E., Dearden, D.V.: Collision cross sectional areas from analysis of fourier transform ion cyclotron resonance line width: a new method for characterizing molecular structure. Anal. Chem. 84, 4851–4857 (2012)CrossRefGoogle Scholar
  78. 78.
    Kim, H.I., Beauchamp, J.L.: Cluster phase chemistry: collisions of vibrationally excited cationic dicarboxylic acid clusters with water molecules initiate dissociation of cluster components. J. Phys. Chem. A 111, 5954–5967 (2007)CrossRefGoogle Scholar
  79. 79.
    Kim, H.I., Goddard, W.A., Beauchamp, J.L.: Cluster phase chemistry: gas-phase reactions of anionic sodium salts of dicarboxylic acid clusters with water molecules. J. Phys. Chem. A 110, 7777–7786 (2006)CrossRefGoogle Scholar
  80. 80.
    Jeon, Y.-M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)CrossRefGoogle Scholar
  81. 81.
    Nau, W.M., Florea, M., Assaf, K.I.: Deep Inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host–guest complexation. Isr. J. Chem. 51, 559–577 (2011)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Dong Hun Noh
    • 1
  • Shin Jung C. Lee
    • 1
  • Jong Wha Lee
    • 1
  • Hugh I. Kim
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Division of Advanced Materials SciencePohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations