Space Charge Induced Nonlinear Effects in Quadrupole Ion Traps

  • Dan Guo
  • Yuzhuo Wang
  • Xingchuang Xiong
  • Hua Zhang
  • Xiaohua Zhang
  • Tao Yuan
  • Xiang Fang
  • Wei Xu
Research Article

Abstract

A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an “ocean wave” shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.

Key words

Space charge Quadrupole ion trap Nonlinear resonance curve Harmonic balance method 

Supplementary material

13361_2013_784_MOESM1_ESM.docx (135 kb)
ESM 1(DOCX 134 kb)

References

  1. 1.
    Cooks, R.G.: Special feature: historical collision-induced dissociation: readings and commentary. J. Mass Spectrom. 30(9), 1215–1221 (1995)CrossRefGoogle Scholar
  2. 2.
    March, R.E.: Quadrupole Ion Trap Mass Spectrometer. Wiley Online Library: (2000)Google Scholar
  3. 3.
    Coon, J.J., Shabanowitz, J., Hunt, D.F., Syka, J.E.P.: Electron transfer dissociation of peptide anions. J. Am. Soc. Mass Spectrom. 16(6), 880–882 (2005)CrossRefGoogle Scholar
  4. 4.
    Huzarska, M., Ugalde, I., Kaplan, D.A., Hartmer, R., Easterling, M.L., Polfer, N.C.: Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer. Anal. Chem. 82(7), 2873–2878 (2010)CrossRefGoogle Scholar
  5. 5.
    Vincent, C.E., Rensvold, J.W., Westphall, M.S., Pagliarini, D.J., Coon, J.J.: Automated gas-phase purification for accurate, multiplexed quantification on a stand-alone ion-trap mass spectrometer. Anal. Chem. 85(4), 2079–2086 (2013)CrossRefGoogle Scholar
  6. 6.
    Vedel, F., Andre, J.: Influence of space charge on the computed statistical properties of stored ions cooled by a buffer gas in a quadrupole rf trap. Phys. Rev. A 29(4), 2098 (1984)CrossRefGoogle Scholar
  7. 7.
    Cox, K.A., Cleven, C.D., Cooks, R.G.: Mass shifts and local space charge effects observed in the quadrupole ion trap at higher resolution. Int. J. Mass Spectrom. Ion Processes 144(1/2), 47–65 (1995)CrossRefGoogle Scholar
  8. 8.
    Xiong, X.C., Xu, W., Fang, X., Deng, Y.L., Ouyang, Z.: Accelerated Simulation study of space charge effects in quadrupole ion traps using GPU techniques. J. Am. Soc. Mass Spectrom. 23(10), 1799–1807 (2012)CrossRefGoogle Scholar
  9. 9.
    Douglas, D.J., Frank, A.J., Mao, D.M.: Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24(1), 1–29 (2005)CrossRefGoogle Scholar
  10. 10.
    Plass, W.R., Li, H.Y., Cooks, R.G.: Theory, simulation, and measurement of chemical mass shifts in rf quadrupole ion traps. Int. J. Mass Spectrom. 228(2/3), 237–267 (2003)CrossRefGoogle Scholar
  11. 11.
    Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13(6), 659–669 (2002)CrossRefGoogle Scholar
  12. 12.
    Vedel, F., Andre, J., Vedel, M., Brincourt, G.: Computed energy and spatial statistical properties of stored ions cooled by a buffer gas. Phys. Rev. A 27(5), 2321 (1983)CrossRefGoogle Scholar
  13. 13.
    Guan, S., Marshall, A.: Equilibrium space charge distribution in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 5(2), 64–71 (1994)CrossRefGoogle Scholar
  14. 14.
    Hemberger, P.H., Nogar, N.S., Williams, J.D., Cooks, R.G., Syka, J.E.P.: Laser photodissociation probe for ion tomography studies in a quadrupole ion-trap mass spectrometer. Chem. Phys. Lett. 191(5), 405–410 (1992)CrossRefGoogle Scholar
  15. 15.
    Cleven, C.D., Cooks, R.G., Garrett, A.W., Nogar, N.S., Hemberger, P.H.: Radial distributions and ejection times of molecular ions in an ion trap mass spectrometer: a laser tomography study of effects of ion density and molecular type. J. Phys. Chem. 100(1), 40–46 (1996)CrossRefGoogle Scholar
  16. 16.
    Plass, W.R., Gill, L.A., Bui, H.A., Cooks, R.G.: Ion mobility measurement by DC tomography in an rf quadrupole ion trap. J. Phys. Chem. A 104(21), 5059–5065 (2000)CrossRefGoogle Scholar
  17. 17.
    Parks, J.H., Szoke, A.: Simulation of collisional relaxation of trapped ion clouds in the presence of space charge fields. J. Chem. Phys. 103(4), 1422–1439 (1995)CrossRefGoogle Scholar
  18. 18.
    Grinfeld, D.E., Kopaev, I.A., Makarov, A.A., Monastyrskiy, M.A.: Equilibrium ion distribution modeling in rf ion traps and guides with regard to Coulomb effects. Nuclear Instrum. Methods Phys. Res. A 645(1), 141–145 (2011)CrossRefGoogle Scholar
  19. 19.
    Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16(6), 512–526 (2002)CrossRefGoogle Scholar
  20. 20.
    Nikolaev, E.N., Heeren, R.M.A., Popov, A.M., Pozdneev, A.V., Chingin, K.S.: Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Commun. Mass Spectrom. 21(22), 3527 (2007)CrossRefGoogle Scholar
  21. 21.
    Ledford, E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56(14), 2744–2748 (1984)CrossRefGoogle Scholar
  22. 22.
    Amster, I.J.: Fourier transform mass spectrometry. J. Mass Spectrom. 31(12), 1325–1337 (1996)CrossRefGoogle Scholar
  23. 23.
    Comisarow, M.B., Marshall, A.G.: Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 26(4), 489–490 (1974)CrossRefGoogle Scholar
  24. 24.
    Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25(2), 282–283 (1974)CrossRefGoogle Scholar
  25. 25.
    Jeffries, J.B., Barlow, S.E., Dunn, G.H.: Theory of space-charge shift of ion cyclotron resonance frequencies. Int. J. Mass Spectrom. Ion Processes 54(1/2), 169–187 (1983)CrossRefGoogle Scholar
  26. 26.
    Nikolaev, E.N., Miluchihin, N.V., Inoue, M.: Evolution of an ion cloud in a Fourier transform ion cyclotron resonance mass spectrometer during signal detection: its influence on spectral line shape and position. Int. J. Mass Spectrom. Ion Processes 148(3), 145–157 (1995)CrossRefGoogle Scholar
  27. 27.
    Kharchenko, A., Vladimirov, G., Heeren, R.M.A., Nikolaev, E.N.: Performance of Orbitrap mass analyzer at various space charge and non-ideal field conditions: simulation approach. J. Am. Soc. Mass Spectrom. 23(5), 977–987 (2012)CrossRefGoogle Scholar
  28. 28.
    Makarov, A., Denisov, E., Kholomeev, A., Baischun, W., Lange, O., Strupat, K., Horning, S.: Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem. 78(7), 2113–2120 (2006)CrossRefGoogle Scholar
  29. 29.
    Hu, Q.Z., Noll, R.J., Li, H.Y., Makarov, A., Hardman, M., Cooks, R.G.: The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40(4), 430–443 (2005)CrossRefGoogle Scholar
  30. 30.
    Ding, L., Sudakov, M., Kumashiro, S.: A simulation study of the digital ion trap mass spectrometer. Int. J. Mass Spectrom. 221(2), 117–138 (2002)CrossRefGoogle Scholar
  31. 31.
    Ding, L., Sudakov, M., Brancia, F.L., Giles, R., Kumashiro, S.: A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J. Mass Spectrom. 39(5), 471–484 (2004)CrossRefGoogle Scholar
  32. 32.
    McLuckey, S.A., Wu, J., Bundy, J.L., Stephenson, J.L., Hurst, G.B.: Oligonucleotide mixture, analysis via electrospray and ion/ion reactions in a quadrupole ion trap. Anal. Chem. 74(5), 976–984 (2002)CrossRefGoogle Scholar
  33. 33.
    Qiao, H., Gao, C., Mao, D., Konenkov, N., Douglas, D.J.: Space-charge effects with mass-selective axial ejection from a linear quadrupole ion trap. Rapid Commun. Mass Spectrom. 25(23), 3509–3520 (2011)CrossRefGoogle Scholar
  34. 34.
    Todd, J.F.J., Waldren, R.M., Freer, D.A., Turner, R.B.: The quadrupole ion store (QUISTOR). Part X. Space charge and ion stability. B. On the theoretical distribution and density of stored charge in rf quadrupole fields. Int. J. Mass Spectrom. Ion Phys. 35(1), 107–150 (1980)CrossRefGoogle Scholar
  35. 35.
    Todd, J.F.J., Waldren, R.M., Mather, R.E.: The quadrupole ion store (QUISTOR). Part IX. Space charge and ion stability. A. Theoretical background and experimental results. Int. J. Mass Spectrom. Ion Physics 34(3), 325–349 (1980)Google Scholar
  36. 36.
    Vedel, F.: On the dynamics and energy of ion clouds stored in an rf quadrupole trap. Int. J. Mass Spectrom. Ion Processes 106, 33–61 (1991)CrossRefGoogle Scholar
  37. 37.
    Li, G.Z., Guan, S.H., Marshall, A.G.: Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps. J. Am. Soc. Mass Spectrom. 9(5), 473–481 (1998)CrossRefGoogle Scholar
  38. 38.
    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Charge capacity limitations of radio frequency ion guides in their use for improved ion accumulation and trapping in mass spectrometry. Anal. Chem. 72(5), 970–978 (2000)CrossRefGoogle Scholar
  39. 39.
    Prestage, J.D., Dick, G.J., Maleki, L.: New ion trap for frequency standard applications. J. Appl. Phys. 66(3), 1013–1017 (1989)CrossRefGoogle Scholar
  40. 40.
    Campbell, J.M., Collings, B.A., Douglas, D.J.: A new linear ion trap time-of-flight system with tandem mass spectrometry capabilities. Rapid Commun. Mass Spectrom. 12(20), 1463–1474 (1998)CrossRefGoogle Scholar
  41. 41.
    Chen, S.-P., Comisarow, M.B.: Simple physical models for coulomb-induced frequency shifts and coulomb-induced inhomogeneous broadening for like and unlike ions in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 5(10), 450–455 (1991)CrossRefGoogle Scholar
  42. 42.
    Chen, S.-P., Comisarow, M.B.: Modeling Coulomb effects in Fourier-transform ion cyclotron resonance mass spectrometry by charged disks and charged cylinders. Rapid Commun. Mass Spectrom. 6(1), 1–3 (1992)CrossRefGoogle Scholar
  43. 43.
    Mitchell, D.W., Smith, R.D.: Cyclotron motion of two Coulombically interacting ion clouds with implications to Fourier transform ion cyclotron resonance mass spectrometry. Phys. Rev. E. 52(4), 4366 (1995)CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Huang, Z., Jiang, Y., Xiong, X., Deng, Y., Fang, X., Xu, W.: The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study. J. Mass Spectrom. 48(8), 937–944 (2013)CrossRefGoogle Scholar
  45. 45.
    Mickens, R.E.: A generalization of the method of harmonic balance. J. Sound Vibration 111(3), 515–518 (1986)CrossRefGoogle Scholar
  46. 46.
    Dehmelt, H.G.: Radiofrequency spectroscopy of stored ions. I: Storage. Adv. At. Mol. Phys. 3, 53 (1967)Google Scholar
  47. 47.
    Stafford Jr., G.C., Kelley, P.E., Syka, J.E.P., Reynolds, W.E., Todd, J.F.J.: Recent improvements in and analytical applications of advanced ion trap technology. Int. J. Mass Spectrom. Ion Processes 60(1), 85–98 (1984)CrossRefGoogle Scholar
  48. 48.
    Xu, W., Chappell, W.J., Ouyang, Z.: Modeling of ion transient response to dipolar AC excitation in a quadrupole ion trap. Int. J. Mass Spectrom. 308(1), 49–55 (2011)CrossRefGoogle Scholar
  49. 49.
    Doroudi, A., Asl, A.R.: Calculation of secular axial frequencies in a nonlinear ion trap with hexapole, octopole, and decapole superpositions by a modified Lindstedt-Poincare method. Int. J. Mass Spectrom. 309, 104–108 (2012)Google Scholar
  50. 50.
    Zhou, X., Zhu, Z., Xiong, C., Chen, R., Xu, W., Qiao, H., Peng, W.-P., Nie, Z., Chen, Y.: Characteristics of stability boundary and frequency in nonlinear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 21(9), 1588–1595 (2010)CrossRefGoogle Scholar
  51. 51.
    Zhao, X., Douglas, D.J.: Dipole excitation of ions in linear radio frequency quadrupole ion traps with added multipole fields. Int. J. Mass Spectrom. 275(1/3), 91–103 (2008)CrossRefGoogle Scholar
  52. 52.
    Sevugarajan, S., Menon, A.G.: Frequency perturbation in nonlinear Paul traps: a simulation study of the effect of geometric aberration, space charge, dipolar excitation, and damping on ion axial secular frequency. Int. J. Mass Spectrom. 197(1), 263–278 (2000)CrossRefGoogle Scholar
  53. 53.
    Makarov, A.A.: Resonance ejection from the Paul trap: a theoretical treatment incorporating a weak octapole field. Anal. Chem. 68(23), 4257–4263 (1996)CrossRefGoogle Scholar
  54. 54.
    Goeringer, D.E., Viehland, L.A., Danailov, D.M.: Prediction of collective characteristics for ion ensembles in quadrupole ion traps without trajectory simulations. J. Am. Soc. Mass Spectrom. 17(7), 889–902 (2006)CrossRefGoogle Scholar
  55. 55.
    Prentice, B.M., McLuckey, S.A.: Dipolar DC collisional activation in a "stretched" 3D ion trap: the effect of higher order fields on rf heating. J. Am. Soc. Mass Spectrom. 23(4), 736–744.Google Scholar
  56. 56.
    Lammert, S.A., Plass, W.R., Thompson, C.V., Wise, M.B.: Design, optimization, and initial performance of a toroidal rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212(1/3), 25–40 (2001)CrossRefGoogle Scholar
  57. 57.
    Beaty, E.C.: Calculated electrostatic properties of ion traps. Phys. Rev. A 33(6), 3645 (1986)CrossRefGoogle Scholar
  58. 58.
    Xu, W., Chappell, W.J., Cooks, G.R., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Dan Guo
    • 1
  • Yuzhuo Wang
    • 1
  • Xingchuang Xiong
    • 2
  • Hua Zhang
    • 3
  • Xiaohua Zhang
    • 3
  • Tao Yuan
    • 4
  • Xiang Fang
    • 2
  • Wei Xu
    • 1
    • 5
  1. 1.Department of Biomedical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.National Institute of MetrologyBeijingChina
  3. 3.Beijing Purkinje General Instrument Co., LtdBeijingChina
  4. 4.KunShan Innowave Communication Technology Co., LtdJiangshuChina
  5. 5.School of Life Science, Beijing Institute of Technology, HaidianBeijing, 100081China

Personalised recommendations