Skip to main content
Log in

Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein–ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric “oxidized” peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shacter, E.: Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 32, 307–326 (2000)

    Article  CAS  Google Scholar 

  2. Stadtman, E.R., Berlett, B.S.: Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30, 225–243 (1998)

    Article  CAS  Google Scholar 

  3. Marondedze, C., Turek, I., Parrott, B., Thomas, L., Jankovic, B., Lilley, K.S., Gehring, C.: Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins. Cell Commun. Signal. 11, 1 (2013)

    Article  CAS  Google Scholar 

  4. Kuhns, L.G., Mahawar, M., Sharp, J.S., Benoit, S., Maier, R.J.: Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation. Biochem. J. 450, 141–148 (2013)

    Article  CAS  Google Scholar 

  5. Chen, H.J., Chen, Y.C.: Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal. Chem. 84, 7881–7890 (2012)

    Article  CAS  Google Scholar 

  6. Gitlin, G., Tsarbopoulos, A., Patel, S.T., Sydor, W., Pramanik, B.N., Jacobs, S., Westreich, L., Mittelman, S., Bausch, J.N.: Isolation and characterization of a monomethioninesulfoxide variant of interferon alpha-2b. Pharm. Res. 13, 762–769 (1996)

    Article  CAS  Google Scholar 

  7. Chen, W., Yewdell, J.W., Levine, R.L., Bennink, J.R.: Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. J. Exp. Med. 189, 1757–1764 (1999)

    Article  CAS  Google Scholar 

  8. Berti, P.J., Ekiel, I., Lindahl, P., Abrahamson, M., Storer, A.C.: Affinity purification and elimination of methionine oxidation in recombinant human cystatin C. Protein Expr. Purif. 11, 111–118 (1997)

    Article  CAS  Google Scholar 

  9. Hsu, Y.R., Narhi, L.O., Spahr, C., Langley, K.E., Lu, H.S.: In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on the molecular structure, biological activity, and dimerization. Protein Sci. 5, 1165–1173 (1996)

    Article  CAS  Google Scholar 

  10. Xu, G., Chance, M.R.: Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev. 107, 3514–3543 (2007)

    Article  CAS  Google Scholar 

  11. Wang, L., Chance, M.R.: Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal. Chem. 83, 7234–7241 (2011)

    Article  CAS  Google Scholar 

  12. Charvatova, O., Foley, B.L., Bern, M.W., Sharp, J.S., Orlando, R., Woods, R.J.: Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1. J. Am. Soc. Mass Spectrom. 19, 1692–1705 (2008)

    Article  CAS  Google Scholar 

  13. Chance, M.R.: Unfolding of apomyoglobin examined by synchrotron footprinting. Biochem. Biophys. Res. Commun. 287, 614–621 (2001)

    Article  CAS  Google Scholar 

  14. Kiselar, J.G., Chance, M.R.: Future directions of structural mass spectrometry using hydroxyl radical footprinting. J. Mass Spectrom. 45, 1373–1382 (2010)

    Article  CAS  Google Scholar 

  15. Zhang, H., Gau, B.C., Jones, L.M., Vidavsky, I., Gross, M.L.: Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal. Chem. 83, 311–318 (2011)

    Article  CAS  Google Scholar 

  16. Jones, L.M., Sperry, J.B., Carroll, J.A., Gross, M.L.: Fast photochemical oxidation of proteins for epitope mapping. Anal. Chem. 83, 7657–7661 (2011)

    Article  CAS  Google Scholar 

  17. Gau, B., Garai, K., Frieden, C., Gross, M.L.: Mass spectrometry-based protein footprinting characterizes the structures of oligomeric apolipoprotein E2, E3, and E4. Biochemistry 50, 8117–8126 (2011)

    Article  CAS  Google Scholar 

  18. Chen, J., Rempel, D.L., Gau, B.C., Gross, M.L.: Fast photochemical oxidation of proteins and mass spectrometry follow submillisecond protein folding at the amino-acid level. J. Am. Chem. Soc. 134, 18724–18731 (2012)

    Article  CAS  Google Scholar 

  19. Gau, B.C., Chen, J., Gross, M.L.: Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. Biochim. Biophys. Acta 1834, 1230–1238 (2013)

    Article  CAS  Google Scholar 

  20. Smedley, J.G., Sharp, J.S., Kuhn, J.F., Tomer, K.B.: Probing the pH-dependent prepore to pore transition of Bacillus anthracis protective antigen with differential oxidative protein footprinting. Biochemistry 47, 10694–10704 (2008)

    Article  CAS  Google Scholar 

  21. Maleknia, S.D., Brenowitz, M., Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem. 71, 3965–3973 (1999)

    Article  CAS  Google Scholar 

  22. Goldsmith, S.C., Guan, J.Q., Almo, S., Chance, M.: Synchrotron protein footprinting: a technique to investigate protein-protein interactions. J. Biomol. Struct. Dyn. 19, 405–418 (2001)

    Article  CAS  Google Scholar 

  23. Sharp, J.S., Sullivan, D.M., Cavanagh, J., Tomer, K.B.: Measurement of multisite oxidation kinetics reveals an active site conformational change in Spo0F as a result of protein oxidation. Biochemistry 45, 6260–6266 (2006)

    Article  CAS  Google Scholar 

  24. Sharp, J.S., Tomer, K.B.: Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Biophys. J. 92, 1682–1692 (2007)

    Article  CAS  Google Scholar 

  25. Hambly, D.M., Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005)

    Article  CAS  Google Scholar 

  26. Gau, B.C., Sharp, J.S., Rempel, D.L., Gross, M.L.: Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal. Chem. 81, 6563–6571 (2009)

    Article  CAS  Google Scholar 

  27. Watson, C., Janik, I., Zhuang, T., Charvatova, O., Woods, R.J., Sharp, J.S.: Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting. Anal. Chem. 81, 2496–2505 (2009)

    Article  CAS  Google Scholar 

  28. Srikanth, R., Wilson, J., Bridgewater, J.D., Numbers, J.R., Lim, J., Olbris, M.R., Kettani, A., Vachet, R.W.: Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation. J. Am. Soc. Mass Spectrom. 18, 1499–1506 (2007)

    Article  CAS  Google Scholar 

  29. Srikanth, R., Wilson, J., Vachet, R.W.: Correct identification of oxidized histidine residues using electron-transfer dissociation. J. Mass Spectrom. 44, 755–762 (2009)

    Article  CAS  Google Scholar 

  30. Jumper, C.C., Bomgarden, R., Rogers, J., Etienne, C., Schriemer, D.C.: High-resolution mapping of carbene-based protein footprints. Anal. Chem. 84, 4411–4418 (2012)

    Article  CAS  Google Scholar 

  31. Wiesner, J., Premsler, T., Sickmann, A.: Application of electron transfer dissociation (ETD) for the analysis of post-translational modifications. Proteomics 8, 4466–4483 (2008)

    Article  CAS  Google Scholar 

  32. Zhou, Y., Dong, J., Vachet, R.W.: Electron transfer dissociation of modified peptides and proteins. Curr. Pharm. Biotechnol. 12, 1558–1567 (2011)

    Article  CAS  Google Scholar 

  33. Lagerwerf, F.M., van de Weert, M., Heerma, W., Haverkamp, J.: Identification of oxidized methionine in peptides. Rapid Commun. Mass Spectrom. 10, 1905–1910 (1996)

    Article  CAS  Google Scholar 

  34. Xu, G., Takamoto, K., Chance, M.R.: Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions. Anal. Chem. 75, 6995–7007 (2003)

    Article  CAS  Google Scholar 

  35. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of this research by the National Institute of General Medical Sciences (1R01GM096049-01A1) and in part by the National Institute of General Medical Sciences-funded “Research Resource for Integrated Glycotechnology” (P41 GM103390) from the National Institutes of Health. The authors thank Professor Kelley Moremen for the expression and purification of the Robo-1 Ig1-2 protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua S. Sharp.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 15608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Li, Z., Xie, B. et al. Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting. J. Am. Soc. Mass Spectrom. 24, 1767–1776 (2013). https://doi.org/10.1007/s13361-013-0719-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0719-5

Keywords

Navigation