Skip to main content
Log in

Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Distance-of-flight mass spectrometry (DOFMS) is a velocity-based, spatially dispersive MS technique in which ions are detected simultaneously along the plane of a spatially selective detector. In DOFMS, ions fly though the instrument and mass separate over a set period of time. The single flight time at which all ions are measured defines the specific m/z values that are detectable; the range of m/z values is dictated by the length of the spatially selective detector. However, because each packet of ions is detected at a single flight time, multiple groups of ions can fly through the instrument concurrently and be detected at a single detector. In this way, DOFMS experiments can be interleaved to perform several mass separation experiments within a single DOF repetition period. Interleaved operation allows the orthogonal acceleration region to be operated at a repetition rate higher than the reciprocal of the flight time, which improves the duty factor of the technique. In this paper, we consider the fundamental parameters of interleaved DOFMS and report first results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Guilhaus, M., Selby, D., Mlynski, V.: Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom. Rev. 19(2), 65–107 (2000)

    Article  CAS  Google Scholar 

  2. Boyle, J.G., Whitehouse, C.M.: Time-of-flight mass spectrometry with an electrospray ion beam. Anal. Chem. 64(18), 2084–2089 (1992)

    Article  CAS  Google Scholar 

  3. Chernushevich, I.V., Loboda, A.V., Thomson, B.A.: An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36(8), 849–865 (2001)

    Article  CAS  Google Scholar 

  4. Chernushevich, I.V.: Duty cycle improvement for a quadrupole-time-of-flight mass spectrometer and its use for precursor ion scans. Eur. J. Mass Spectrom. 6(6), 471–480 (2000)

    Article  CAS  Google Scholar 

  5. Dawson, J.H.J., Guilhaus, M.: Orthogonal-Acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 3(5), 155–159 (1989)

    Article  CAS  Google Scholar 

  6. Knorr, F.J., Ajami, M., Chatfield, D.A.: Fourier transform time-of-flight mass spectrometry. Anal. Chem. 58(4), 690–694 (1986)

    Article  CAS  Google Scholar 

  7. Brock, A., Rodriguez, N., Zare, R.N.: Hadamard transform time-of-flight mass spectrometry. Anal. Chem. 70(18), 3735–3741 (1998)

    Article  CAS  Google Scholar 

  8. Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a Traveling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18(20), 2401–2414 (2004)

    Article  CAS  Google Scholar 

  9. Brenton, A.G., Krastev, T., Rousell, D.J., Kennedy, M.A., Craze, A.S., Williams, C.M.: Improvement of the duty cycle of an orthogonal acceleration time-of-flight mass spectrometer using ion gates. Rapid Commun. Mass Spectrom. 21(18), 3093–3102 (2007)

    Article  CAS  Google Scholar 

  10. Bandura, D.R., Baranov, V.I., Ornatsky, O.I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J.E., Tanner, S.D.: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81(16), 6813–6822 (2009)

    Article  CAS  Google Scholar 

  11. Hashimoto, Y., Hasegawa, H., Satake, H., Baba, T., Waki, I.: Duty cycle enhancement of an orthogonal acceleration TOF mass spectrometer using an axially-resonant excitation linear ion trap. J. Am. Soc. Mass Spectrom. 17(12), 1669–1674 (2006)

    Article  CAS  Google Scholar 

  12. Loboda, A.V., Chernushevich, I.V.: A novel ion trap that enables high duty cycle and wide m/z range on an orthogonal injection TOF mass spectrometer. J. Am. Soc. Mass Spectrom. 20(7), 1342–1348 (2009)

    Article  CAS  Google Scholar 

  13. Grix, R., Grüner, U., Li, G., Stroh, H., Wollnik, H.: An electron impact storage ion source for time-of-flight mass spectrometers. Int. J. Mass Spectrom. Ion Process. 93(3), 323–330 (1989)

    Article  CAS  Google Scholar 

  14. Boyle, J.G., Whitehouse, C.M., Fenn, J.B., Cotter, R.J.: An ion-storage time-of-flight mass spectrometer for analysis of electrospray ions. Rapid Commun. Mass Spectrom. 5(9), 400–405 (1991)

    Article  CAS  Google Scholar 

  15. Chien, B.M., Michael, S.M., Lubman, D.M.: The design and performance of an ion trap storage/reflectron time-of-flight mass spectrometer. Int. J. Mass Spectrom. Ion Process. 131, 149–179 (1994)

    Article  CAS  Google Scholar 

  16. Chambers, D.M., Grace, L.I., Andresen, B.D.: Development of an ion store/time-of-flight mass spectrometer for the analysis of volatile compounds in air. Anal. Chem. 69(18), 3780–3790 (1997)

    Article  CAS  Google Scholar 

  17. Dobson, G.S., Enke, C.G.: Axial ion focusing in a miniature linear ion trap. Anal. Chem. 79(10), 3779–3785 (2007)

    Article  CAS  Google Scholar 

  18. Dangi, B.B., Ervin, K.M.: Optimization of a Quadrupole ion storage trap as a source for time-of-flight mass spectrometry. J. Mass Spectrom. 47(1), 41–48 (2012)

    Article  CAS  Google Scholar 

  19. Wolff, M.M., Stephens, W.E.: A pulsed mass spectrometer with time dispersion. Rev. Sci. Instrum. 24(8), 616–617 (1953)

    Article  CAS  Google Scholar 

  20. Enke, C.G., Dobson, G.S.: Achievement of energy focus for distance-of-flight mass spectrometry with constant momentum acceleration and an ion mirror. Anal. Chem. 79(22), 8650–8661 (2007)

    Article  CAS  Google Scholar 

  21. Graham, A.W.G., Ray, S.J., Enke, C.G., Felton, J.A., Carado, A.J., Barinaga, C.J., Koppenaal, D.W., Hieftje, G.M.: Resolution and mass range performance in distance-of-flight mass spectrometry with a multichannel focal-plane camera detector. Anal. Chem. 83(22), 8552–8559 (2011)

    Article  CAS  Google Scholar 

  22. Enke, C.G., Ray, S.J., Graham, A.W., Dennis, E.A., Hieftje, G.M., Carado, A.J., Barinaga, C.J., Koppenaal, D.W.: Distance-of-flight mass spectrometry: a new paradigm for mass separation and detection. Annu. Rev. Anal. Chem. 5(1), 487–504 (2012)

    Article  CAS  Google Scholar 

  23. Gundlach-Graham, A.W., Dennis, E.A., Ray, S.J., Enke, C.G., Carado, A.J., Barinaga, C.J., Koppenaal, D.W., Hieftje, G.M.: Extension of the focusable mass range in distance-of-flight mass spectrometry with multiple detectors. Rapid Commun. Mass Spectrom. 26(21), 2526–2534 (2012)

    Article  CAS  Google Scholar 

  24. Wiley, W.C., McLaren, I.H.: Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26(12), 1150–1157 (1955)

    Article  CAS  Google Scholar 

  25. Graham, A., Ray, S., Enke, C., Barinaga, C., Koppenaal, D., Hieftje, G.: First Distance-of-flight instrument: opening a new paradigm in mass spectrometry. J. Am. Soc. Mass Spectrom. 22(1), 110–117 (2011)

    Article  CAS  Google Scholar 

  26. Schilling, G.D., Ray, S.J., Rubinshtein, A.A., Felton, J.A., Sperline, R.P., Denton, M.B., Barinaga, C.J., Koppenaal, D.W., Hieftje, G.M.: Evaluation of a 512-channel Faraday-Strip array detector coupled to an inductively coupled plasma Mattauch-Herzog mass spectrograph. Anal. Chem. 81(13), 5467–5473 (2009)

    Article  CAS  Google Scholar 

  27. Rubinshtein, A.A., Schilling, G.D., Ray, S.J., Sperline, R.P., Denton, M.B., Barinaga, C.J., Koppenaal, D.W., Hieftje, G.M.: Characterization of a third-generation Faraday-strip array detector coupled to a Mattauch-Herzog geometry mass spectrograph with a DC-glow discharge ionization source. J. Anal. At. Spectrom. 25(5), 735–738 (2010)

    Article  CAS  Google Scholar 

  28. Gundlach-Graham, A., Dennis, E.A., Ray, S. J., Enke, C.G., Barinaga, C.J., Koppenaal, D.W., Hieftje, G.M.: First Inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector. J. Anal. At. Spectrom. 28(9), 1385–1395 (2013)

    Google Scholar 

  29. Vlasak, P.R., Beussman, D.J., Davenport, M.R., Enke, C.G.: An interleaved comb ion deflection gate for m/z selection in time-of-flight mass spectrometry. Rev. Sci. Instrum. 67(1), 68–72 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.G.-G. thanks the Division of Analytical Chemistry (DAC) of the American Chemistry Society and Agilent Technologies for a DAC graduate-research fellowship. This research was supported in part by the National Science Foundation through grant DBI‐1062846 and performed in collaboration with Pacific Northwest National Laboratory, operated for the US DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO-1830op. Partial salary support was provided by the US Department of Energy through grant DE‐FG02‐09ER14980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Hieftje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundlach-Graham, A., Dennis, E.A., Ray, S.J. et al. Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. J. Am. Soc. Mass Spectrom. 24, 1736–1744 (2013). https://doi.org/10.1007/s13361-013-0718-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0718-6

Keywords

Navigation