Skip to main content

Advertisement

Log in

Dissociation of Multisubunit Protein–Ligand Complexes in the Gas Phase. Evidence for Ligand Migration

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1)) and corresponding glycosphingolipid (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/– ions, as well as for deprotonated (S4 + 4Btl)n– ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein–ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Towards a proteome scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005)

    Article  CAS  Google Scholar 

  2. Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B., Edelmann, A., Heurtier, M.A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B., Superti-Furga, G.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)

    Article  CAS  Google Scholar 

  3. Robinson, C.V., Sali, A., Baumeister, W.: The molecular sociology of the cell. Nature 450, 973–982 (2007)

    Article  CAS  Google Scholar 

  4. Ilari, A., Savino, C.: Protein structure determination by X-ray crystallography. Methods Mol. Biol. 452, 63–87 (2008)

    Article  CAS  Google Scholar 

  5. Nietlispach, D., Mott, H.R., Stott, K.M., Nielsen, P.R., Thiru, A., Laue, E.D.: Structure determination of protein complexes by NMR. Methods Mol. Biol. 278, 255–288 (2004)

    CAS  Google Scholar 

  6. Jonic, S., Vénien-Bryan, C.: Protein structure determination by electron cryo-microscopy. Curr. Opin. Pharmacol. 9, 636–642 (2009)

    Article  CAS  Google Scholar 

  7. Mertens, H.D., Svergun, D.I.: Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol. 172, 128–141 (2010)

    Article  CAS  Google Scholar 

  8. Greenfield, N.J.: Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2007)

    Article  Google Scholar 

  9. Kelley, L.A., Sternberg, M.J.E.: Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009)

    Article  CAS  Google Scholar 

  10. Loo, J.A.: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186 (2000)

    Article  CAS  Google Scholar 

  11. Benesch, J.L.P., Robinson, C.V.: Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol. 16, 245–251 (2006)

    Article  CAS  Google Scholar 

  12. Barrera, N.P., Robinson, C.V.: Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 80, 247–271 (2011)

    Article  CAS  Google Scholar 

  13. Uetrecht, C., Heck, A.J.: Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew. Chem. Int. Ed. 50, 8248–8262 (2011)

    Article  CAS  Google Scholar 

  14. van den Heuvel, R.H.H., Heck, A.J.R.: Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004)

    Article  Google Scholar 

  15. Hall, Z., Politis, A., Robinson, C.V.: Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20, 1596–1609 (2012)

    Article  CAS  Google Scholar 

  16. Taverner, T., Hernández, H., Sharon, M., Ruotolo, B.T., Matak-Vinković, D., Devos, D., Russell, R.B., Robinson, C.V.: Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 41, 617–627 (2008)

    Article  CAS  Google Scholar 

  17. Benesch, J.L.P., Ruotolo, B.T., Simmons, D.A., Robinson, C.V.: Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007)

    Article  CAS  Google Scholar 

  18. McLafferty, F.W., Guan, Z.Q., Haupts, U., Wood, T.D., Kelleher, N.L.: Gaseous conformational structures of cytochrome c. J. Am. Chem. Soc. 120, 4732–4740 (1998)

    Article  CAS  Google Scholar 

  19. Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient black-body radiation. Science 279, 194–197 (1997)

    Article  Google Scholar 

  20. Price, W.D., Schnier, P.D., Williams, E.R.: Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem. 68, 859–866 (1996)

    Article  CAS  Google Scholar 

  21. Dunbar, R.C.: BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom. Rev. 23, 127–158 (2004)

    Article  CAS  Google Scholar 

  22. Wanasundara, S.N., Thachuk, M.: Theoretical investigations of the dissociation of charged protein complexes in the gas phase. J. Am. Soc. Mass Spectrom. 18, 2242–2253 (2007)

    Article  CAS  Google Scholar 

  23. Benesch, J.L., Aquilina, J.A., Ruotolo, B.T., Sobott, F., Robinson, C.V.: Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem. Biol. 13, 597–605 (2006)

    Article  CAS  Google Scholar 

  24. Jurchen, J.C., Williams, E.R.: Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J. Am. Chem. Soc. 125, 2817–2826 (2003)

    Article  CAS  Google Scholar 

  25. Jones, C.M., Beardsley, R.L., Galhena, A.S., Dagan, S., Cheng, G.L., Wysocki, V.H.: Symmetrical gas-phase dissociation of noncovalent protein complexes via surface collisions. J. Am. Chem. Soc. 128, 15044–15045 (2006)

    Article  CAS  Google Scholar 

  26. Beardsley, R.L., Jones, C.M., Galhena, A.S., Wysocki, V.H., Blackwell, A.E., Dodds, E.D., Bandarian, V., Wysocki, V.H.: Revealing the quaternary structure of a heterogeneous noncovalent protein complex through surface-induced dissociation. Anal. Chem. 83, 2862–2865 (2011)

    Article  Google Scholar 

  27. Rostom, A.A., Fucini, P., Benjamin, D.R., Juenemann, R., Nierhaus, K.H., Hartl, F.U., Dobson, C.M., Robinson, C.V.: Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc. Natl. Acad. Sci. 97, 5185–5190 (2000)

    Article  CAS  Google Scholar 

  28. Lorenzen, K., Vannini, A., Cramer, P., Heck, A.J.: Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 15, 1237–1245 (2007)

    Article  CAS  Google Scholar 

  29. Robinson, C.V., Deshaies, R.J., Sharon, M., Ambroggio, X.I., Taverner, T.: Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006)

    Article  Google Scholar 

  30. Damoc, E., Fraser, C.S., Zhou, M., Videler, H., Mayeur, G.L., Hershey, J.W., Doudn, J.A., Robinson, C.V., Leary, J.A.: Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol. Cell Proteomics. 6, 1135–1146 (2007)

    Article  CAS  Google Scholar 

  31. McCammon, M.G., Hernández, H., Sobott, F., Robinson, C.V.: Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc. 126, 5950–5951 (2004)

    Article  CAS  Google Scholar 

  32. Beardsley, R.L., Jones, C.M., Galhena, A.S., Wysocki, V.H.: Noncovalent protein tetramers and pentamers with "n" charges yield monomers with n/4 and n/5 charges. Anal. Chem. 4, 1347–1356 (2009)

    Article  Google Scholar 

  33. Versluis, C., Heck, A.J.R.: Gas-phase dissociation of hemoglobin. Int. J. Mass Spectrom. 210/211, 637–649 (2001)

    Article  CAS  Google Scholar 

  34. Felitsyn, N., Kitova, E.N., Klassen, J.S.: Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. Anal. Chem. 73, 4647–4661 (2001)

    Article  CAS  Google Scholar 

  35. Hyung, S.J., Robinson, C.V., Ruotolo, B.T.: Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem. Biol. 16, 382–390 (2009)

    Article  CAS  Google Scholar 

  36. Turnbull, W.B., Precious, B.L., Homans, S.W.: Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 126, 1047–1054 (2004)

    Article  CAS  Google Scholar 

  37. Lauer, S., Goldstein, B., Nolan, R.L., Nolan, J.P.: Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochemistry 41, 1742–1751 (2002)

    Article  CAS  Google Scholar 

  38. Schafer, D.E., Thakur, A.K.: Quantitative description of the binding of GM1 oligosaccharide by cholera enterotoxin. Cell Biophys. 4, 25–40 (1982)

    CAS  Google Scholar 

  39. Merritt, E.A., Sarfaty, S., van den Akker, F., L'Hoir, C., Martial, J.A., Hol, W.G.: Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Prot. Sci. 3, 166–175 (1994)

    Article  CAS  Google Scholar 

  40. Chilkoti, A., Stayton, P.S.: Molecular origins of the slow streptavidin-biotin dissociation kinetics. J. Am. Chem. Soc. 117, 10622–10628 (1995)

    Article  CAS  Google Scholar 

  41. Freitag, S., Le Trong, I., Klumb, L., Stayton, P.S., Stenkamp, R.E.: Structural studies of the streptavidin binding loop. Prot. Sci. 6, 1157–1166 (1997)

    Article  CAS  Google Scholar 

  42. Chilkoti, A., Tan, P.H., Stayton, P.S.: Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc. Natl. Acad. Sci. 92, 1754–1758 (1995)

    Article  CAS  Google Scholar 

  43. Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., Sligar, S.G.: Chapter 11. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009)

    Article  CAS  Google Scholar 

  44. Bayburt, T.H., Grinkova, Y.V., Sligar, S.G.: Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nanoletters 2, 853–856 (2002)

    Article  CAS  Google Scholar 

  45. Zhang, Y., Liu, L., Daneshfar, R., Kitova, E.N., Li, C., Jia, F., Cairo, C.W., Klassen, J.S.: Protein–glycosphingolipid interactions revealed using catch-and-release mass spectrometry. Anal. Chem. 84, 7618–7621 (2012)

    Article  CAS  Google Scholar 

  46. Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 11. University of California, San Francisco (2010)

    Google Scholar 

  47. Deng, L., Broom, A., Kitova, E.N., Richards, M.R., Zheng, R.B., Shoemaker, G.K., Meiering, E.M., Klassen, J.S.: Kinetic stability of the streptavidin-biotin interaction enhanced in the gas phase. J. Am. Chem. Soc. 134, 16586–16596 (2012)

    Article  CAS  Google Scholar 

  48. Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.-Y.: Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 (2011)

    Article  CAS  Google Scholar 

  49. Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., Cieplak, P.: The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 12, 7821–7839 (2010)

    Article  CAS  Google Scholar 

  50. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford, CT (2009)

    Google Scholar 

  51. Merritt, E.A., Kuhn, P., Sarfaty, S., Erbe, J.L., Holmes, R.K., Hol, W.G.: The 1.25 A resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. J. Mol. Biol. 282, 1043–1059 (1998)

    Article  CAS  Google Scholar 

  52. Boyle, N.M.O'., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: an open chemical toolbox. J. Cheminf. 3, 33 (2011)

    Google Scholar 

  53. The Open Babel Package, ver. 2.3.1. Available at: http://openbabel.org. Accessed 30 Sept 2012

  54. Hall, Z., Politis, A., Bush, M.F., Smith, L.J., Robinson, C.V.: Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012)

    Article  CAS  Google Scholar 

  55. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  56. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., Kollman, P.J.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Comput. Chem. 24, 1999–2012 (2003)

    Article  CAS  Google Scholar 

  57. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  58. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  59. Sun, J., Kitova, E.N., Wang, W., Klassen, J.S.: Method for distinguishing specific and nonspecific protein–ligand complexes in nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 3010–3018 (2006)

    Article  CAS  Google Scholar 

  60. Wang, W., Kitova, E.N., Klassen, J.S.: Nonspecific protein–carbohydrate complexes produced by nanoelectrospray ionization. Factors influencing their formation and stability. Anal. Chem. 77, 3060–3071 (2005)

    Article  CAS  Google Scholar 

  61. Holmgren, J., Lönnroth, I., Månsson, J., Svennerholm, L.: Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. 72, 2520–2524 (1975)

    Article  CAS  Google Scholar 

  62. Kitova, E.N., Bundle, D.R., Klassen, J.S.: Thermal dissociation of protein–oligosaccharide complexes in the gas phase. Mapping the intrinsic intermolecular interactions. J. Am. Chem. Soc. 124, 5902–5913 (2002)

    Article  CAS  Google Scholar 

  63. Kitova, E.N., Seo, M., Roy, P.-N., Klassen, J.S.: Elucidating the intermolecular interactions within a desolvated protein–ligand complex. An experimental and computational study. J. Am. Chem. Soc. 130, 1214–1226 (2008)

    Article  CAS  Google Scholar 

  64. Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein–ligand interactions preserved in the gas phase. J. Am. Chem. Soc. 131, 15980–15981 (2009)

    Article  CAS  Google Scholar 

  65. Kitova, E.N., Bundle, D.R., Klassen, J.S.: Partitioning of solvent effects and intrinsic interactions in biological recognition. Angew. Chem. Int. Ed. 43, 4183–4186 (2004)

    Article  CAS  Google Scholar 

  66. Kitova, E.N., Bundle, D.R., Klassen, J.S.: Evidence for the preservation of specific intermolecular interactions in gaseous protein–oligosaccharide complexes. J. Am. Chem. Soc. 124, 9340–9341 (2002)

    Article  CAS  Google Scholar 

  67. Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J. Am. Chem. Soc. 134, 3054–3060 (2012)

    Article  CAS  Google Scholar 

  68. Light-Wahl, K.J., Schwartz, B.L., Smith, R.D.: Observation of the noncovalent quaternary associations of proteins be electrospray ionization mass spectrometry. J. Am. Chem. Soc. 116, 5271–5278 (1994)

    Article  CAS  Google Scholar 

  69. Jurchen, J.C., Garcia, D.E., Williams, E.R.: Further studies on the origins of asymmetric charge partitioning in protein homodimers. J. Am. Soc. Mass Spectrom. 15, 1408–1415 (2004)

    Article  CAS  Google Scholar 

  70. Pagel, K., Hyung, S.J., Ruotolo, B.T., Robinson, C.V.: Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal. Chem. 82, 5363–5372 (2010)

    Article  CAS  Google Scholar 

  71. Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Evidence that water can reduce the kinetic stability of protein−hydrophobic ligand interactions. J. Am. Chem. Soc. 132, 17658–17660 (2010)

    Article  CAS  Google Scholar 

  72. Salpin, J.-Y., Tortajada, J.: Gas-phase acidity of D-glucose. A density functional theory study. J. Mass Spectrom. 39, 930–941 (2004)

    Article  CAS  Google Scholar 

  73. Sinelnikov, I., Kitova, E.N., Klassen, J.S.: Influence of Coulombic repulsion on dissociation pathways and energetics of multiprotein complexes in the gas phase. J. Am. Soc. Mass Spectrom. 18, 617–631 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre for funding. The MD simulations were made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Klassen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Deng, L., Kitova, E.N. et al. Dissociation of Multisubunit Protein–Ligand Complexes in the Gas Phase. Evidence for Ligand Migration. J. Am. Soc. Mass Spectrom. 24, 1573–1583 (2013). https://doi.org/10.1007/s13361-013-0712-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0712-z

Key words

Navigation