Dissociation of Multisubunit Protein–Ligand Complexes in the Gas Phase. Evidence for Ligand Migration

  • Yixuan Zhang
  • Lu Deng
  • Elena N. Kitova
  • John S. Klassen
Research Article

Abstract

The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1)) and corresponding glycosphingolipid (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/– ions, as well as for deprotonated (S4 + 4Btl)n– ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein–ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.

Key words

Multisubunit protein complex Collision-induced dissociation Dissociation mechanism Ligand migration 

Notes

Acknowledgments

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre for funding. The MD simulations were made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

Supplementary material

13361_2013_712_MOESM1_ESM.docx (5.1 mb)
ESM 1(DOCX 5248 kb)

References

  1. 1.
    Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Towards a proteome scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005)CrossRefGoogle Scholar
  2. 2.
    Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B., Edelmann, A., Heurtier, M.A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B., Superti-Furga, G.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)CrossRefGoogle Scholar
  3. 3.
    Robinson, C.V., Sali, A., Baumeister, W.: The molecular sociology of the cell. Nature 450, 973–982 (2007)CrossRefGoogle Scholar
  4. 4.
    Ilari, A., Savino, C.: Protein structure determination by X-ray crystallography. Methods Mol. Biol. 452, 63–87 (2008)CrossRefGoogle Scholar
  5. 5.
    Nietlispach, D., Mott, H.R., Stott, K.M., Nielsen, P.R., Thiru, A., Laue, E.D.: Structure determination of protein complexes by NMR. Methods Mol. Biol. 278, 255–288 (2004)Google Scholar
  6. 6.
    Jonic, S., Vénien-Bryan, C.: Protein structure determination by electron cryo-microscopy. Curr. Opin. Pharmacol. 9, 636–642 (2009)CrossRefGoogle Scholar
  7. 7.
    Mertens, H.D., Svergun, D.I.: Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol. 172, 128–141 (2010)CrossRefGoogle Scholar
  8. 8.
    Greenfield, N.J.: Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2007)CrossRefGoogle Scholar
  9. 9.
    Kelley, L.A., Sternberg, M.J.E.: Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009)CrossRefGoogle Scholar
  10. 10.
    Loo, J.A.: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186 (2000)CrossRefGoogle Scholar
  11. 11.
    Benesch, J.L.P., Robinson, C.V.: Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol. 16, 245–251 (2006)CrossRefGoogle Scholar
  12. 12.
    Barrera, N.P., Robinson, C.V.: Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 80, 247–271 (2011)CrossRefGoogle Scholar
  13. 13.
    Uetrecht, C., Heck, A.J.: Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew. Chem. Int. Ed. 50, 8248–8262 (2011)CrossRefGoogle Scholar
  14. 14.
    van den Heuvel, R.H.H., Heck, A.J.R.: Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004)CrossRefGoogle Scholar
  15. 15.
    Hall, Z., Politis, A., Robinson, C.V.: Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20, 1596–1609 (2012)CrossRefGoogle Scholar
  16. 16.
    Taverner, T., Hernández, H., Sharon, M., Ruotolo, B.T., Matak-Vinković, D., Devos, D., Russell, R.B., Robinson, C.V.: Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 41, 617–627 (2008)CrossRefGoogle Scholar
  17. 17.
    Benesch, J.L.P., Ruotolo, B.T., Simmons, D.A., Robinson, C.V.: Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007)CrossRefGoogle Scholar
  18. 18.
    McLafferty, F.W., Guan, Z.Q., Haupts, U., Wood, T.D., Kelleher, N.L.: Gaseous conformational structures of cytochrome c. J. Am. Chem. Soc. 120, 4732–4740 (1998)CrossRefGoogle Scholar
  19. 19.
    Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient black-body radiation. Science 279, 194–197 (1997)CrossRefGoogle Scholar
  20. 20.
    Price, W.D., Schnier, P.D., Williams, E.R.: Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem. 68, 859–866 (1996)CrossRefGoogle Scholar
  21. 21.
    Dunbar, R.C.: BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom. Rev. 23, 127–158 (2004)CrossRefGoogle Scholar
  22. 22.
    Wanasundara, S.N., Thachuk, M.: Theoretical investigations of the dissociation of charged protein complexes in the gas phase. J. Am. Soc. Mass Spectrom. 18, 2242–2253 (2007)CrossRefGoogle Scholar
  23. 23.
    Benesch, J.L., Aquilina, J.A., Ruotolo, B.T., Sobott, F., Robinson, C.V.: Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem. Biol. 13, 597–605 (2006)CrossRefGoogle Scholar
  24. 24.
    Jurchen, J.C., Williams, E.R.: Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J. Am. Chem. Soc. 125, 2817–2826 (2003)CrossRefGoogle Scholar
  25. 25.
    Jones, C.M., Beardsley, R.L., Galhena, A.S., Dagan, S., Cheng, G.L., Wysocki, V.H.: Symmetrical gas-phase dissociation of noncovalent protein complexes via surface collisions. J. Am. Chem. Soc. 128, 15044–15045 (2006)CrossRefGoogle Scholar
  26. 26.
    Beardsley, R.L., Jones, C.M., Galhena, A.S., Wysocki, V.H., Blackwell, A.E., Dodds, E.D., Bandarian, V., Wysocki, V.H.: Revealing the quaternary structure of a heterogeneous noncovalent protein complex through surface-induced dissociation. Anal. Chem. 83, 2862–2865 (2011)CrossRefGoogle Scholar
  27. 27.
    Rostom, A.A., Fucini, P., Benjamin, D.R., Juenemann, R., Nierhaus, K.H., Hartl, F.U., Dobson, C.M., Robinson, C.V.: Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc. Natl. Acad. Sci. 97, 5185–5190 (2000)CrossRefGoogle Scholar
  28. 28.
    Lorenzen, K., Vannini, A., Cramer, P., Heck, A.J.: Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 15, 1237–1245 (2007)CrossRefGoogle Scholar
  29. 29.
    Robinson, C.V., Deshaies, R.J., Sharon, M., Ambroggio, X.I., Taverner, T.: Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006)CrossRefGoogle Scholar
  30. 30.
    Damoc, E., Fraser, C.S., Zhou, M., Videler, H., Mayeur, G.L., Hershey, J.W., Doudn, J.A., Robinson, C.V., Leary, J.A.: Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol. Cell Proteomics. 6, 1135–1146 (2007)CrossRefGoogle Scholar
  31. 31.
    McCammon, M.G., Hernández, H., Sobott, F., Robinson, C.V.: Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc. 126, 5950–5951 (2004)CrossRefGoogle Scholar
  32. 32.
    Beardsley, R.L., Jones, C.M., Galhena, A.S., Wysocki, V.H.: Noncovalent protein tetramers and pentamers with "n" charges yield monomers with n/4 and n/5 charges. Anal. Chem. 4, 1347–1356 (2009)CrossRefGoogle Scholar
  33. 33.
    Versluis, C., Heck, A.J.R.: Gas-phase dissociation of hemoglobin. Int. J. Mass Spectrom. 210/211, 637–649 (2001)CrossRefGoogle Scholar
  34. 34.
    Felitsyn, N., Kitova, E.N., Klassen, J.S.: Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. Anal. Chem. 73, 4647–4661 (2001)CrossRefGoogle Scholar
  35. 35.
    Hyung, S.J., Robinson, C.V., Ruotolo, B.T.: Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem. Biol. 16, 382–390 (2009)CrossRefGoogle Scholar
  36. 36.
    Turnbull, W.B., Precious, B.L., Homans, S.W.: Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 126, 1047–1054 (2004)CrossRefGoogle Scholar
  37. 37.
    Lauer, S., Goldstein, B., Nolan, R.L., Nolan, J.P.: Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochemistry 41, 1742–1751 (2002)CrossRefGoogle Scholar
  38. 38.
    Schafer, D.E., Thakur, A.K.: Quantitative description of the binding of GM1 oligosaccharide by cholera enterotoxin. Cell Biophys. 4, 25–40 (1982)Google Scholar
  39. 39.
    Merritt, E.A., Sarfaty, S., van den Akker, F., L'Hoir, C., Martial, J.A., Hol, W.G.: Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Prot. Sci. 3, 166–175 (1994)CrossRefGoogle Scholar
  40. 40.
    Chilkoti, A., Stayton, P.S.: Molecular origins of the slow streptavidin-biotin dissociation kinetics. J. Am. Chem. Soc. 117, 10622–10628 (1995)CrossRefGoogle Scholar
  41. 41.
    Freitag, S., Le Trong, I., Klumb, L., Stayton, P.S., Stenkamp, R.E.: Structural studies of the streptavidin binding loop. Prot. Sci. 6, 1157–1166 (1997)CrossRefGoogle Scholar
  42. 42.
    Chilkoti, A., Tan, P.H., Stayton, P.S.: Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc. Natl. Acad. Sci. 92, 1754–1758 (1995)CrossRefGoogle Scholar
  43. 43.
    Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., Sligar, S.G.: Chapter 11. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009)CrossRefGoogle Scholar
  44. 44.
    Bayburt, T.H., Grinkova, Y.V., Sligar, S.G.: Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nanoletters 2, 853–856 (2002)CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Liu, L., Daneshfar, R., Kitova, E.N., Li, C., Jia, F., Cairo, C.W., Klassen, J.S.: Protein–glycosphingolipid interactions revealed using catch-and-release mass spectrometry. Anal. Chem. 84, 7618–7621 (2012)CrossRefGoogle Scholar
  46. 46.
    Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 11. University of California, San Francisco (2010)Google Scholar
  47. 47.
    Deng, L., Broom, A., Kitova, E.N., Richards, M.R., Zheng, R.B., Shoemaker, G.K., Meiering, E.M., Klassen, J.S.: Kinetic stability of the streptavidin-biotin interaction enhanced in the gas phase. J. Am. Chem. Soc. 134, 16586–16596 (2012)CrossRefGoogle Scholar
  48. 48.
    Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.-Y.: Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 (2011)CrossRefGoogle Scholar
  49. 49.
    Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., Cieplak, P.: The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 12, 7821–7839 (2010)CrossRefGoogle Scholar
  50. 50.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford, CT (2009)Google Scholar
  51. 51.
    Merritt, E.A., Kuhn, P., Sarfaty, S., Erbe, J.L., Holmes, R.K., Hol, W.G.: The 1.25 A resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. J. Mol. Biol. 282, 1043–1059 (1998)CrossRefGoogle Scholar
  52. 52.
    Boyle, N.M.O'., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: an open chemical toolbox. J. Cheminf. 3, 33 (2011)Google Scholar
  53. 53.
    The Open Babel Package, ver. 2.3.1. Available at: http://openbabel.org. Accessed 30 Sept 2012
  54. 54.
    Hall, Z., Politis, A., Bush, M.F., Smith, L.J., Robinson, C.V.: Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012)CrossRefGoogle Scholar
  55. 55.
    Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)CrossRefGoogle Scholar
  56. 56.
    Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., Kollman, P.J.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Comput. Chem. 24, 1999–2012 (2003)CrossRefGoogle Scholar
  57. 57.
    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004)CrossRefGoogle Scholar
  58. 58.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRefGoogle Scholar
  59. 59.
    Sun, J., Kitova, E.N., Wang, W., Klassen, J.S.: Method for distinguishing specific and nonspecific protein–ligand complexes in nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 3010–3018 (2006)CrossRefGoogle Scholar
  60. 60.
    Wang, W., Kitova, E.N., Klassen, J.S.: Nonspecific protein–carbohydrate complexes produced by nanoelectrospray ionization. Factors influencing their formation and stability. Anal. Chem. 77, 3060–3071 (2005)CrossRefGoogle Scholar
  61. 61.
    Holmgren, J., Lönnroth, I., Månsson, J., Svennerholm, L.: Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. 72, 2520–2524 (1975)CrossRefGoogle Scholar
  62. 62.
    Kitova, E.N., Bundle, D.R., Klassen, J.S.: Thermal dissociation of protein–oligosaccharide complexes in the gas phase. Mapping the intrinsic intermolecular interactions. J. Am. Chem. Soc. 124, 5902–5913 (2002)CrossRefGoogle Scholar
  63. 63.
    Kitova, E.N., Seo, M., Roy, P.-N., Klassen, J.S.: Elucidating the intermolecular interactions within a desolvated protein–ligand complex. An experimental and computational study. J. Am. Chem. Soc. 130, 1214–1226 (2008)CrossRefGoogle Scholar
  64. 64.
    Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein–ligand interactions preserved in the gas phase. J. Am. Chem. Soc. 131, 15980–15981 (2009)CrossRefGoogle Scholar
  65. 65.
    Kitova, E.N., Bundle, D.R., Klassen, J.S.: Partitioning of solvent effects and intrinsic interactions in biological recognition. Angew. Chem. Int. Ed. 43, 4183–4186 (2004)CrossRefGoogle Scholar
  66. 66.
    Kitova, E.N., Bundle, D.R., Klassen, J.S.: Evidence for the preservation of specific intermolecular interactions in gaseous protein–oligosaccharide complexes. J. Am. Chem. Soc. 124, 9340–9341 (2002)CrossRefGoogle Scholar
  67. 67.
    Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J. Am. Chem. Soc. 134, 3054–3060 (2012)CrossRefGoogle Scholar
  68. 68.
    Light-Wahl, K.J., Schwartz, B.L., Smith, R.D.: Observation of the noncovalent quaternary associations of proteins be electrospray ionization mass spectrometry. J. Am. Chem. Soc. 116, 5271–5278 (1994)CrossRefGoogle Scholar
  69. 69.
    Jurchen, J.C., Garcia, D.E., Williams, E.R.: Further studies on the origins of asymmetric charge partitioning in protein homodimers. J. Am. Soc. Mass Spectrom. 15, 1408–1415 (2004)CrossRefGoogle Scholar
  70. 70.
    Pagel, K., Hyung, S.J., Ruotolo, B.T., Robinson, C.V.: Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal. Chem. 82, 5363–5372 (2010)CrossRefGoogle Scholar
  71. 71.
    Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Evidence that water can reduce the kinetic stability of protein−hydrophobic ligand interactions. J. Am. Chem. Soc. 132, 17658–17660 (2010)CrossRefGoogle Scholar
  72. 72.
    Salpin, J.-Y., Tortajada, J.: Gas-phase acidity of D-glucose. A density functional theory study. J. Mass Spectrom. 39, 930–941 (2004)CrossRefGoogle Scholar
  73. 73.
    Sinelnikov, I., Kitova, E.N., Klassen, J.S.: Influence of Coulombic repulsion on dissociation pathways and energetics of multiprotein complexes in the gas phase. J. Am. Soc. Mass Spectrom. 18, 617–631 (2007)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2013

Authors and Affiliations

  • Yixuan Zhang
    • 1
  • Lu Deng
    • 1
  • Elena N. Kitova
    • 1
  • John S. Klassen
    • 1
  1. 1.Department of Chemistry and Alberta Glycomics CentreUniversity of AlbertaEdmontonCanada

Personalised recommendations