Skip to main content
Log in

Flash Desorption/Mass Spectrometry for the Analysis of Less- and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

In this paper, the important issue of the desorption of less- and nonvolatile compounds with minimal sample decomposition in ambient mass spectrometry is approached using ambient flash desorption mass spectrometry. The preheated stainless steel filament was driven down and up along the vertical axis in 0.3 s. At the lowest position, it touched the surface of the sample with an invasion depth of 0.1 mm in 50 ms (flash heating) and was removed from the surface (fast cooling). The heating rate corresponds to ~104 °C/s at the filament temperature of 500 °C. The desorbed gaseous molecules were ionized by using a dielectric barrier discharge ion source, and the produced ions were detected by a time-of-flight (TOF) mass spectrometer. Less-volatile samples, such as pharmaceutical tablets, narcotics, explosives, and C60 gave molecular and protonated molecule ions as major ions with thermal decomposition minimally suppressed. For synthetic polymers (PMMA, PLA, and PS), the mass spectra reflected their backbone structures because of the suppression of the sequential thermal decompositions of the primary products. The present technique appears to be suitable for high-throughput qualitative analyses of many types of solid samples in the range from a few ng to 10 μg with minimal sample consumption. Some contribution from tribodesorption in addition to thermal desorption was suggested for the desorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Beuhler, R.J., Flanigan, E., Greene, L.J., Friedman, L.: Proton transfer mass spectrometry of peptides: Rapid heating technique for underivatized peptides containing arginine. J. Am. Chem. Soc. 96, 3990–3999 (1974)

    Article  CAS  Google Scholar 

  2. Vergne, M.J., Hercules, D.V., Lattimer, R.P.: A development history of polymer mass spectrometry. J. Chem. Educ. 84, 81–90 (2007)

    Article  CAS  Google Scholar 

  3. Buchberger, W., Stiftinger, M.: Analysis of polymer additives and impurities by liquid chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry. Adv. Polym. Sci. 248, 39–68 (2012)

    Article  CAS  Google Scholar 

  4. Hanton, S.D.: Mass spectrometry of polymers and polymer surfaces. Chem. Rev. 101, 527–569 (2001)

    Article  CAS  Google Scholar 

  5. Hsu, H.-J., Kuo, T.-L., Wu, S.-H., Oung, J.-N., Shiea, J.: Characterization of synthetic polymers by electrospray-assisted pyrolysis ionization mass spectrometry. Anal. Chem. 77, 7744–7749 (2005)

    Article  CAS  Google Scholar 

  6. Ovchinnikova, O.S., Van Berkel, G.J.: Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization. Rapid Commun. Mass Spectrom. 24, 1721–1729 (2010)

    Article  CAS  Google Scholar 

  7. Ovchinnikova, O.S., Kertesz, V., Van Berkel, G.J.: Molecular surface sampling and chemical imaging using proximal probe thermal desorption/secondary ionization mass spectrometry. Anal. Chem. 83, 598–603 (2011)

    Article  CAS  Google Scholar 

  8. Chen, L.C., Suzuki, H., Mori, K., Ariyada, O., Hiraoka, K.: Mass spectrometric detection of gaseous hydrogen peroxide in ambient air using dielectric barrier discharge as an excitation source. Chem. Lett. 38, 520–521 (2009)

    Article  CAS  Google Scholar 

  9. Hiraoka, K., Chen, L.C., Iwama, T., Mandal, M.K., Ninomiya, S., Suzuki, H., Ariyada, O., Furuya, H., Takekawa, K.: Development of a remote-from-plasma dielectric barrier discharge ion source and its application to explosives. J. Mass Spectrom. Soc. Jpn. 58, 215–220 (2010)

    Article  CAS  Google Scholar 

  10. Na, N., Zhao, M., Zhang, S., Yang, C., Zhang, X.: Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 1859–1862 (2007)

    Article  CAS  Google Scholar 

  11. Garcia-Reyes, J.F., Harper, J.D., Salazar, G.A., Charipar, N.A., Ouyang, Z., Cooks, R.G.: Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Anal. Chem. 83, 1084–1092 (2011)

    Article  CAS  Google Scholar 

  12. Saha, S., Chen, L.C., Mandal, M.K., Hiraoka, K.: Leidenfrost phenomenon-assisted thermal desorption (LPTD) and its application to open ion sources at atmospheric pressure mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 341–347 (2013)

    Article  CAS  Google Scholar 

  13. Harris, G.A., Galhena, A.S., Fernández, F.M.: Ambient sampling/ionization mass spectrometry: application and current trends. Anal. Chem. 83, 4508–4538 (2011)

    Article  CAS  Google Scholar 

  14. Chen, H., Taly, N.N., Takats, Z., Cooks, R.G.: Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Anal. Chem. 77, 6915–6927 (2005)

    Article  CAS  Google Scholar 

  15. Shiea, J., Huang, M.-Z., Hsu, H.-J., Lee, C.-Y., Yuan, C.-H., Beech, I., Sunner, J.: Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 19, 3701–3704 (2005)

    Article  CAS  Google Scholar 

  16. Haddad, R., Sparrapan, R., Eberlin, M.N.: Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2901–2905 (2006)

    Article  CAS  Google Scholar 

  17. Nyadong, L., Harris, G.A., Balayssacc, S., Galhena, A.S., Malet-Martino, M., Martino, R., Parry, R.M., Wang, M.D., Fernadez, F.M., Gilard, V.: Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals. Anal. Chem. 81, 4803–4812 (2009)

    Article  CAS  Google Scholar 

  18. Galhena, A.S., Harris, G.A., Nyadong, L., Murray, K.K., Fernandez, F.M.: Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization. Anal. Chem. 82, 2178–2181 (2010)

    Article  CAS  Google Scholar 

  19. Zhan, X., Zhao, Z., Yuan, X., Wang, Q., Li, D., Xie, H., Li, X., Zhou, M., Duan, Y.: Microwave-induced plasma desorption/ionization source for ambient mass spectrometry. Anal. Chem. 85, 4512–4519 (2013)

    Article  CAS  Google Scholar 

  20. Jackson, A.U., Garcia-Reyes, J.F., Harper, J.D., Wiley, J.S., Molina-Diaz, A., Ouyang, Z., Cooks, R.G.: Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrom etry. Analyst 135, 927–933 (2010)

    Article  CAS  Google Scholar 

  21. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)

    Article  CAS  Google Scholar 

  22. Justes D.R., Talaty N., Cotte-Rodriguez I., Cooks R.G. Detection of explosives on skin using ambient ionization mass spectrometry. Chem Commun. 2142–2144 (2007)

  23. Hiraoka, K., Ninomiya, S., Chen, L.C., Iwama, T., Mandal, M.K., Suzuki, H., Ariyada, O., Furuya, H., Takekawa, K.: Development of double cylindrical dielectric barrier discharge ion source. Analyst 136, 1210–1215 (2011)

    Article  CAS  Google Scholar 

  24. Gilbert-López, B., Schilling, M., Ahlmann, N., Michels, A., Hayen, H., Molina-Díaz, A., Garcia-Reyes, J.F., Franzke, J.: Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of non-volatile chemicals. Anal. Chem. 85, 3174–3182 (2013)

    Article  Google Scholar 

  25. Saldi, F., Marie, Y., Gao, Y., Simon, C., Migeon, H.N., Bégin, D., Marêché, J.F.: Time-of-flight secondary ion mass spectrometry of fullerenes. Eur. Mass Spectrom. 1, 487–492 (1995)

    Article  CAS  Google Scholar 

  26. Fabbri, D., Trombini, C., Vassura, I.: Analysis of polystyrene in polluted sediments by pyrolysis-gas chromatography–mass spectrometry. J. Chromatogr. Sci. 36, 600–604 (1998)

    Article  CAS  Google Scholar 

  27. Lattimer, R.P.: Pyrolysis field ionization mass spectrometry of hydrocarbon polymers. J. Anal. App. Pyrol. 39, 115–127 (1997)

    Article  CAS  Google Scholar 

  28. Madorsky, S.L., Straus, S.: High vacuum pyrolytic fractionation of polystyrene-mass spectrometer analysis of some of the fractions. Ind. Eng. Chem. 40, 848–852 (1948)

    Article  CAS  Google Scholar 

  29. Wall, L.A.: Mass spectrometric investigation of the thermal decompo sition of polymers. J. Res. Natl. Bur. Stand. (U.S.) 41, 315–322 (1948)

    Article  CAS  Google Scholar 

  30. Völlmin, J., Kriemler, P., Omura, I., Seibl, J., Simon, W.: Structural elucidation with a thermal fragmentation-gas-chromatogrpahy-mass spectrometry combination. Microchemistry J. 11, 73–86 (1966)

    Article  Google Scholar 

  31. Haunschmidt, M., Klampfl, C.W., Buchberger, W., Hertsens, R.: Rapid identification of stabilizers in polypropylene using time-of-flight mass spectrometry and DART as ion source. Analyst 135, 80–85 (2010)

    Article  CAS  Google Scholar 

  32. Jecklin, M., Gamez, G., Zenobi, R.: Fast polymer fingerprinting using flowing afterglow atmospheric pressure glow discharge mass spectrometry. Analyst 134, 1629–1636 (2009)

    Article  CAS  Google Scholar 

  33. Arrieta, M.P., Parres, F., Lopez, J., Jimenez, A.: Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products. J. Anal. Appl. Pyrolysis. 101, 150–155 (2013)

    Article  CAS  Google Scholar 

  34. Arii, T.: TG-MS study on thermal decomposition of polystyrene. J. Mass Spectrom. Soc. Jpn. 51, 235–241 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work by the Japanese Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Hiraoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usmanov, D.T., Ninomiya, S. & Hiraoka, K. Flash Desorption/Mass Spectrometry for the Analysis of Less- and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament. J. Am. Soc. Mass Spectrom. 24, 1727–1735 (2013). https://doi.org/10.1007/s13361-013-0711-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0711-0

Key words

Navigation