Skip to main content
Log in

Factors that Influence Competitive Intermolecular Solvation of Protonated Groups in Peptides and Proteins in the Gas Phase

  • Focus: Electron Transfer Dissociation: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The ability of 18-crown-6 (18C6) to form noncovalent complexes with cationic groups in the gas phase has been leveraged in numerous, largely orthogonal mass spectrometry-based applications. Although the fundamental interaction between 18C6 and a charged group in the gas phase is quite strong, the strength of attachment of 18C6 to large molecules is more difficult to predict because intramolecular binding of the cation can be competitive. Herein, we demonstrate in experiments with model peptides that 18C6 adducts are not strongly attached to flexible molecules with numerous potential hydrogen bonding sites. 18C6 adduct stability is increased if intramolecular charge complexation is inhibited by sterics or competitive binding. It is demonstrated with molecular mechanics that significant structural changes occur upon loss of 18C6 in model peptides. Examination of the loss of 18C6 adducts from proteins following collisional activation reveals that lower charge states lose the most 18C6. The degree of 18C6 adduct stability may reflect the degree of structural reorganization that occurs following collisional activation, suggesting that lower charge states represent structures that are not similar to gas phase idealized states. In this regard, 18C6 may serve the function of protecting solution phase protein structure. Collisional activation of holomyoglobin with 18C6 adducts attached reveals that heme loss occurs primarily after 18C6 loss, further supporting the notion that 18C6 protects native structure by solvating charged sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004)

    Article  CAS  Google Scholar 

  2. Landini, D., Montanar, F., Pirisi, F.M.: Crown ethers as phase-transfer catalysts in 2-phase reactions. J. Chem. Soc. Chem. Commun. 21, 879–880 (1974)

    Article  Google Scholar 

  3. De Silva, A.P., Desilva, S.A.: Fluorescent signaling crown ethers-switching on of fluorescence by alkali-metal ion recognition and binding in situ. J. Chem. Soc. Chem. Commun. 23, 1709–1710 (1986)

    Article  Google Scholar 

  4. Kuhn, R., Stoecklin, F., Erni, F.: Chiral separations by host–guest complexation with cyclodextrin and crown-ether in capillary zone electrophoresis. Chromatographia 33, 32–36 (1992)

    Article  CAS  Google Scholar 

  5. Maleknia, S., Brodbelt, J.: Gas-phase selectivities of crown ethers for alkali–metal ion complexation. J. Am. Chem. Soc. 114, 4295–4298 (1992)

    Article  CAS  Google Scholar 

  6. Chu, I.H., Zhang, H., Dearden, D.V.: Macrocyclic chemistry in the gas-phase—intrinsic cation affinities and complexation rates for alkali–metal cation complexes of crown-ethers and glymes. J. Am. Chem. Soc. 115, 5736–5744 (1993)

    Article  CAS  Google Scholar 

  7. More, M.B., Ray, D., Armentrout, P.B.: Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: bond dissociation energies of gas-phase M+−crown ether complexes. J. Am. Chem. Soc. 121, 417–423 (1999)

    Article  CAS  Google Scholar 

  8. Julian, R.R., Beauchamp, J.L.: Site specific sequestering and stabilization of charge in peptides by supramolecular adduct formation with 18-crown-6 ether by way of electrospray ionization. Int. J. Mass Spectrom. 210, 613–623 (2001)

    Google Scholar 

  9. Lee, S.W., Lee, H.N., Kim, H.S., Beauchamp, J.L.: Selective binding of crown ethers to protonated peptides can be used to probe mechanisms of H/D exchange and collision-induced dissociation reactions in the gas phase. J. Am. Chem. Soc. 120, 5800–5805 (1998)

    Article  CAS  Google Scholar 

  10. Ly, T., Julian, R.R.: Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-crown-6. J. Am. Soc. Mass Spectrom. 17, 1209–1215 (2006)

    Article  CAS  Google Scholar 

  11. Sun, Q.Y., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2009)

    Article  CAS  Google Scholar 

  12. Bohrer, B.C., Clemmer, D.E.: Shift reagents for multidimensional ion mobility spectrometry-mass spectrometry analysis of complex peptide mixtures: evaluation of 18-Crown-6 ether complexes. Anal. Chem. 83, 5377–5385 (2011)

    Article  CAS  Google Scholar 

  13. Pagel, K., Hyung, S.-J., Ruotolo, B.T., Robinson, C.V.: Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal. Chem. 82(12), 5363–5372 (2010)

    Article  CAS  Google Scholar 

  14. Kupser, P., Pagel, K., Oomens, J., Polfer, N., Koksch, B., Meijer, G., von Helden, G.: Amide-I and -II vibrations of the cyclic beta-sheet model peptide gramicidin S in the gas phase. J. Am. Chem. Soc. 132, 2085–2093 (2010)

    Article  CAS  Google Scholar 

  15. Buschmann, H.J., Schollmeyer, E., Mutihac, L.: The complexation of the ammonium ion by 18-crown-6 in different solvents and by noncyclic ligands, crown ethers, and cryptands in methanol. Supramol. Sci. 5, 139–142 (1998)

    Article  CAS  Google Scholar 

  16. Hamdy, O.M., Julian, R.R.: Reflections on charge state distributions, protein structure, and the mystical mechanism of electrospray ionization. J. Am. Soc. Mass Spectrom. 23, 1–6 (2012)

    Article  CAS  Google Scholar 

  17. Chen, Y., Rodgers, M.T.: Structural and energetic effects in the molecular recognition of amino acids by 18-crown-6. J. Am. Chem. Soc. 134, 5863–5875 (2012)

    Article  CAS  Google Scholar 

  18. Chen, Y., Rodgers, M.T.: Structural and energetic effects in the molecular recognition of protonated peptidomimetic bases by 18-crown-6. J. Am. Chem. Soc. 134, 2313–2324 (2012)

    Article  CAS  Google Scholar 

  19. David, W.M., Brodbelt, J.S.: Threshold dissociation energies of protonated amine/polyether complexes in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 14(4), 383–392 (2003)

    Article  CAS  Google Scholar 

  20. Chan, W.C., White, P.D.: Fmoc Solid Phase Peptide Synthesis, pp. 9–74. Oxford University Press, New York (2000)

    Google Scholar 

  21. McClellan, J.E., Murphy, J.P., Mulholland, J.J., Yost, R.A.: Effects of fragile ions on mass resolution and on isolation for tandem mass spectrometry in the quadrupole ion trap mass spectrometer. Anal. Chem. 74, 402–412 (2002)

    Article  CAS  Google Scholar 

  22. Murphy, J.P., Yost, R.A.: Origin of mass shifts in the quadrupole ion trap: dissociation of fragile ions observed with a hybrid ion trap/mass filter instrument. Rapid Commun. Mass Spectrom. 14, 270–273 (2000)

    Article  CAS  Google Scholar 

  23. Cowan, D.A., Kiman, A.T., Kubli-Garfias, C., Welchman, H.J.: Ion trap MS/MS of intact testosterone and epitestosterone conjugates—adducts, fragile ions, and the advantages of derivatization. Steroids 73, 621–628 (2008)

    Article  CAS  Google Scholar 

  24. Huffman, C.L., Williams, M.L., Benoist, D.M., Overstreet, R.E., Jellen-McCullough, E.E.: Dependence of collision-induced dissociation energy on molecular degrees of freedom as a means to assess relative binding affinity in multivalent complexes. Rapid Commun. Mass Spectrom. 25, 2299–2306 (2011)

    Article  CAS  Google Scholar 

  25. Brodbelt, J.S.: Shedding light on the Frontier of photodissociation. J. Am. Soc. Mass Spectrom. 22, 197–206 (2011)

    Article  CAS  Google Scholar 

  26. Newsome, G.A., Glish, G.L.: Improving IRMPD in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 20, 1127–1131 (2009)

    Article  CAS  Google Scholar 

  27. Uetrecht, C., Rose, R.J., van Duijn, E., Lorenzen, K., Heck, A.J.R.: Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2009)

    Article  Google Scholar 

  28. Warnke, S., von Helden, G., Pagel, K.: Protein structure in the gas phase: the influence of side-chain microsolvation. J. Am. Chem. Soc. 135, 1177–1180 (2013)

    Article  CAS  Google Scholar 

  29. Babu, K.R., Douglas, D.J.: Methanol-induced conformations of myoglobin at pH 4.0. Biochemistry 39, 14702–14710 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank NIH for funding (R01 GM084106) and John Syka and Jae Schwartz for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. Julian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Julian, R.R. Factors that Influence Competitive Intermolecular Solvation of Protonated Groups in Peptides and Proteins in the Gas Phase. J. Am. Soc. Mass Spectrom. 24, 1634–1640 (2013). https://doi.org/10.1007/s13361-013-0684-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0684-z

Key words

Navigation