Skip to main content
Log in

Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n– and VxOyCln– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln– and VxOyCl(L)(n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1–2)– and VxOy (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pope, M.T., Muller, A.: Polyoxometalate chemistry - an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed 30, 34–48 (1991)

    Article  Google Scholar 

  2. Hill, C.L., Prossermccartha, C.M.: Homogeneous catalysis by transition-metal oxygen anion clusters. Coord. Chem. Rev 143, 407–455 (1995)

    Article  CAS  Google Scholar 

  3. Coronado, E., Gomez-Garcia, C.J.: Polyoxometalate-based molecular materials. Chem. Rev 98, 273–296 (1998)

    Article  CAS  Google Scholar 

  4. Clemente-Juan, J.M., Coronado, E.: Magnetic clusters from polyoxometalate complexes. Coord. Chem. Rev 193/195, 361–394 (1999)

    Article  Google Scholar 

  5. Stein, A., Schroden, R.C.: Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curr. Opin. Solid State Materials Sci 5, 553–564 (2001)

    Article  CAS  Google Scholar 

  6. Long, D.L., Cronin, L.: Towards polyoxometalate-integrated nanosystems. Chem.-Eur. J 12, 3699–3706 (2006)

    Article  Google Scholar 

  7. Hill, C.L.: Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry. J. Mol. Catal. A-Chem 262, 2–6 (2007)

    Article  CAS  Google Scholar 

  8. Long, D.L., Burkholder, E., Cronin, L.: Polyoxometalate clusters, nanostructures, and materials: from self assembly to designer materials and devices. Chem. Soc. Rev 36, 105–121 (2007)

    Article  CAS  Google Scholar 

  9. Long, D.L., Tsunashima, R., Cronin, L.: Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed 49, 1736–1758 (2010)

    Article  CAS  Google Scholar 

  10. Walcarius, A.: Electrochemical applications of silica-based organic–inorganic hybrid materials. Chem. Mater 13, 3351–3372 (2001)

    Article  CAS  Google Scholar 

  11. Fleming, C., Long, D.L., McMillan, N., Johnston, J., Bovet, N., Dhanak, V., Gadegaard, N., Kogerler, P., Cronin, L., Kadodwala, M.: Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by metallic substrates. Nat. Nanotechnol 3, 229–233 (2008)

    Article  CAS  Google Scholar 

  12. Douglas, T., Young, M.: Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998)

    Article  CAS  Google Scholar 

  13. Aureliano, M. Decavanadate: a journey in a search of a role. Dalton Trans. 9093–9100 (2009)

  14. Gorzsás, A., Andersson, I., Pettersson, L.: On the fate of vanadate in human blood. Eur. J. Inorg. Chem 2006(18), 3559–3565 (2006)

    Google Scholar 

  15. Surnev, S., Ramsey, M.G., Netzer, F.P.: Vanadium oxide surface studies. Prog. Surf. Sci 73, 117–165 (2003)

    Article  CAS  Google Scholar 

  16. Bond, G.C., Tahir, S.F.: Vanadium-oxide monolayer catalysts—preparation, characterization, and catalytic activity. Appl. Catal 71, 1–31 (1991)

    Article  CAS  Google Scholar 

  17. Rehder, D. In: Bioinorganic Vanadium Chemistry. John Wiley and Sons, Ltd., pp. 13–51 (2008)

  18. Livage, J.: Synthesis of polyoxovanadates via "chimie douce". Coord. Chem. Rev 178, 999–1018 (1998)

    Article  Google Scholar 

  19. Walanda, D.K., Burns, R.C., Lawrance, G.A., von Nagy-Felsobuki, E.I.: Unknown isopolyoxovanadate species detected by electrospray mass spectrometry. Inorg. Chim. Acta 305, 118–126 (2000)

    Article  CAS  Google Scholar 

  20. Livage, J., Bouhedja, L., Bonhomme, C.: Chemically controlled condensation of polyoxovanadates. J. Sol–gel Sci. Technol 13, 65–70 (1998)

    Article  CAS  Google Scholar 

  21. Walanda, D.K., Burns, R.C., Lawrance, G.A., von Nagy-Felsobuki, E.I.: New isopolyoxovanadate ions identified by electrospray mass spectrometry. Inorg. Chem. Commun 2, 487–489 (1999)

    Article  CAS  Google Scholar 

  22. Bouhedja, L., Steunou, N., Maquet, J., Livage, J.: Synthesis of polyoxovanadates from aqueous solutions. J. Solid State Chem 162, 315–321 (2001)

    Article  CAS  Google Scholar 

  23. Steunou, N., Bouhedja, L., Castro-Garcia, S., Livage, J.: Chemically controlled hydrothermal syntheses of vanadium oxides. High Pressure Res 20, 55–62 (2001)

    Article  Google Scholar 

  24. Long, D., Orr, D., Seeber, G., Kogerler, P., Farrugia, L.J., Cronin, L.: The missing link in low nuclearity pure polyoxovanadate clusters: preliminary synthesis and structural analysis of a new V-16 cluster and related products. J. Cluster Sci 14, 313–324 (2003)

    Article  CAS  Google Scholar 

  25. Khan, M.I., Yohannes, E., Doedens, R.J.: A novel series of materials composed of arrays of vanadium oxide container molecules, {V18O42(X)} (X = H2O, Cl-, Br-): synthesis and characterization of M-2(H2N(CH2)(2)NH2)(5) {M(H2N(CH2)(2)NH2)(2)}(2)V18O42(X) • 9H(2)O (M = Zn, Cd). Inorg. Chem 42, 3125–3129 (2003)

    Article  CAS  Google Scholar 

  26. Chen, L., Jiang, F.L., Lin, Z.Z., Zhou, Y.F., Yue, C.Y., Hong, M.C.: A basket tetradecavanadate cluster with blue luminescence. J. Am. Chem. Soc 127, 8588–8589 (2005)

    Article  CAS  Google Scholar 

  27. Okaya, K., Kobayashi, T., Koyama, Y., Hayashi, Y., Isobe, K. Formation of V-V lacunary polyoxovanadates and interconversion reactions of dodecavanadate species. Eur. J. Inorg. Chem. 34, 5156–5163 (2009)

    Google Scholar 

  28. Hayashi, Y.: Hetero and lacunary polyoxovanadate chemistry: Synthesis, reactivity, and structural aspects. Coord. Chem. Rev 255, 2270–2280 (2011)

    Article  CAS  Google Scholar 

  29. Long, D.L., Streb, C., Song, Y.F., Mitchell, S., Cronin, L.: Unravelling the complexities of polyoxometalates in solution using mass spectrometry: protonation versus heteroatom inclusion. J. Am. Chem. Soc 130, 1830–1832 (2008)

    Article  CAS  Google Scholar 

  30. Vila-Nadal, L., Rodriguez-Fortea, A., Yan, L.K., Wilson, E.F., Cronin, L., Poblet, J.M.: Nucleation mechanisms of molecular oxides: a study of the assembly-dissassembly of [W6O19]2- by theory and mass spectrometry. Angew. Chem 48, 5452–5456 (2009)

    Article  CAS  Google Scholar 

  31. Engeser, M., Schroder, D., Schwarz, H.: Gas-phase dehydrogenation of methanol with mononuclear vanadium-oxide cations. Chem.-Eur. J 11, 5975–5987 (2005)

    Article  CAS  Google Scholar 

  32. Feyel, S., Schroder, D., Rozanska, X., Sauer, J., Schwarz, H.: Gas-phase oxidation of propane and 1-butene with V3O7 (+): Experiment and theory in concert. Angew. Chem. Int. Ed 45, 4677–4681 (2006)

    Article  CAS  Google Scholar 

  33. Feyel, S., Schroder, D., Schwarz, H.: Gas-phase oxidation of isomeric butenes and small alkanes by vanadium-oxide and -hydroxide cluster cations. J. Phys. Chem. A 110, 2647–2654 (2006)

    Article  CAS  Google Scholar 

  34. Feyel, S., Schroder, D., Schwarz, H. Gas-phase chemistry of vanadium oxide cluster cations V(m)O(n)(+) (m = 1–4; n = 1–10) with water and molecular oxygen. Eur. J. Inorg. Chem. 31, 4961–4967 (2008)

    Google Scholar 

  35. Zhang, X.H., Schwarz, H.: Generation of Gas-phase nanosized vanadium oxide clusters from a mononuclear precursor by solution nucleation and electrospray ionization. Chem.-Eur. J 16, 1163–1167 (2010)

    Article  CAS  Google Scholar 

  36. Dietl, N., Hockendorf, R.F., Schlangen, M., Lerch, M., Beyer, M.K., Schwarz, H.: Generation, reactivity towards hydrocarbons, and electronic structure of heteronuclear vanadium phosphorous oxygen cluster ions. Angew. Chem. Int. Ed 50, 1430–1434 (2011)

    Article  CAS  Google Scholar 

  37. Feyel, S., Schwarz, H., Schroder, D., Daniel, C., Hartl, H., Dobler, J., Sauer, J., Santambrogio, G., Woste, L., Asmis, K.R.: Gas-phase infrared photodissociation spectroscopy of tetravanadiumoxo and oxo-methoxo cluster anions. ChemPhysChem 8, 1640–1647 (2007)

    Article  CAS  Google Scholar 

  38. Zemski, K.A., Justes, D., Castleman, A.W.: Studies of metal oxide clusters: elucidating reactive sites responsible for the activity of transition metal oxide catalysts. J. Phys. Chem. B 106, 6136–6148 (2002)

    Article  CAS  Google Scholar 

  39. Molek, K.S., Jaeger, T.D., Duncan, M.A.: Photodissociation of vanadium, niobium, and tantalum oxide cluster cations. J. Chem. Phys 123, 144313 (2005)

    Article  CAS  Google Scholar 

  40. Asmis, K.R., Sauer, J.: Mass-selective vibrational spectroscopy of vanadium oxide cluster ions. Mass Spectrom. Rev 26, 542–562 (2007)

    Article  CAS  Google Scholar 

  41. Roithova, J., Schroder, D.: Selective activation of alkanes by gas-phase metal ions. Chem. Rev 110, 1170–1211 (2010)

    Article  CAS  Google Scholar 

  42. Schwarz, H.: Chemistry with methane: concepts rather than recipes. Angew. Chem. Int. Ed 50, 10096–10115 (2011)

    Article  CAS  Google Scholar 

  43. Asmis, K.R., Wende, T., Brummer, M., Gause, O., Santambrogio, G., Stanca-Kaposta, E.C., Dobler, J., Niedziela, A., Sauer, J.: Structural variability in transition metal oxide clusters: gas phase vibrational spectroscopy of V(3)O(6–8)(+). PCCP 14, 9377–9388 (2012)

    Article  CAS  Google Scholar 

  44. Yin, S., Bernstein, E.R.: Gas phase chemistry of neutral metal clusters: Distribution, reactivity and catalysis. Int. J. Mass Spectrom 321, 49–65 (2012)

    Google Scholar 

  45. Bell, R.C., Zemski, K.A., Kerns, K.P., Deng, H.T., Castleman, A.W.: Reactivities and collision-induced dissociation of vanadium oxide cluster cations. J. Phys. Chem. A 102, 1733–1742 (1998)

    Article  CAS  Google Scholar 

  46. Bell, R.C., Zemski, K.A., Castleman, A.W.: Gas-phase chemistry of vanadium oxide cluster cations 3. Reactions with CCl4. J. Phys. Chem. A 103, 1585–1591 (1999)

    Article  CAS  Google Scholar 

  47. Bell, R.C., Zemski, K.A., Justes, D.R., Castleman, A.W.: Formation, structure, and bond dissociation thresholds of gas-phase vanadium oxide cluster ions. J. Chem. Phys 114, 798–811 (2001)

    Article  CAS  Google Scholar 

  48. Zemski, K.A., Justes, D.R., Bell, R.C., Castleman, A.W.: Reactions of niobium and tantalum oxide cluster cations and anions with n-butane. J. Phys. Chem. A 105, 4410–4417 (2001)

    Article  CAS  Google Scholar 

  49. Fielicke, A., Rademann, K.: Stability and reactivity patterns of medium-sized vanadium oxide cluster cations VxOy+ (4 ≤ x ≤ 14). PCCP 4, 2621–2628 (2002)

    Article  CAS  Google Scholar 

  50. Asmis, K.R., Santambrogio, G., Brummer, M., Sauer, J.: Polyhedral vanadium oxide cages: infrared spectra of cluster anions and size-induced d electron localization. Angew. Chem. Int. Ed 44, 3122–3125 (2005)

    Article  CAS  Google Scholar 

  51. Zhai, H.J., Dobler, J., Sauer, J., Wang, L.S.: Probing the electronic structure of early transition-metal oxide clusters: polyhedral cages of (V2O5)(n)(−) (n = 2–4) and (M2O5)(2)(−) (M = Nb, Ta). J. Am. Chem. Soc 129, 13270–13276 (2007)

    Article  CAS  Google Scholar 

  52. Santambrogio, G., Brummer, M., Woste, L., Dobler, J., Sierka, M., Sauer, J., Meijer, G., Asmis, K.R.: Gas phase vibrational spectroscopy of mass-selected vanadium oxide anions. PCCP 10, 3992–4005 (2008)

    Article  CAS  Google Scholar 

  53. Asmis, K.R., Meijer, G., Brummer, M., Kaposta, C., Santambrogio, G., Woste, L., Sauer, J.: Gas phase infrared spectroscopy of mono- and divanadium oxide cluster cations. J. Chem. Phys 120, 6461–6470 (2004)

    Article  CAS  Google Scholar 

  54. Foltin, M., Stueber, G.J., Bernstein, E.R.: On the growth dynamics of neutral vanadium oxide and titanium oxide clusters. J. Chem. Phys 111, 9577–9586 (1999)

    Article  CAS  Google Scholar 

  55. Matsuda, Y., Bernstein, E.R.: Identification, structure, and spectroscopy of neutral vanadium oxide clusters. J. Phys. Chem. A 109, 3803–3811 (2005)

    Article  CAS  Google Scholar 

  56. Dong, F., Heinbuch, S., He, S. G., Xie, Y., Rocca, J.J., Bernstein, E.R. Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5 eV. J. Chem. Phys. 125 (2006)

  57. Jakubikova, E., Rappe, A.K., Bernstein, E.R.: Density functional theory study of small vanadium oxide clusters. J. Phys. Chem. A 111, 12938–12943 (2007)

    Article  CAS  Google Scholar 

  58. Wu, H.B., Wang, L.S.: A photoelectron spectroscopic study of monovanadium oxide anions (VOx-, x = 1–4). J. Chem. Phys 108, 5310–5318 (1998)

    Article  CAS  Google Scholar 

  59. Zhai, H.J., Wang, L.S.: Electronic structure and chemical bonding of divanadium-oxide clusters (V2Ox, x = 3–7) from anion photoelectron spectroscopy. J. Chem. Phys 117, 7882–7888 (2002)

    Article  CAS  Google Scholar 

  60. Pramann, A., Koyasu, K., Nakajima, A., Kaya, K.: Anion photoelectron spectroscopy of VnOm- (n = 4–15; m = 0–2). J. Chem. Phys 116, 6521–6528 (2002)

    Article  CAS  Google Scholar 

  61. Ard, S., Dibble, C.J., Akin, S.T., Duncan, M.A.: Ligand-coated vanadium oxide clusters: capturing gas-phase magic numbers in solution. J. Phys. Chem. C 115, 6438–6447 (2011)

    Article  CAS  Google Scholar 

  62. de Heer, W.A.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Modern Phys 65, 611–676 (1993)

    Article  Google Scholar 

  63. Duncan, M.A. Invited review article: laser vaporization cluster sources. Rev. Sci. Instrum. 83, 041101 (2012)

    Google Scholar 

  64. Vyboishchikov, S.F.: Sauer, J. (V2O5)(n) gas-phase clusters (n = 1–12) compared to V2O5 crystal: DFT calculations. J. Phys. Chem 105, 8588–8598 (2001)

    Article  CAS  Google Scholar 

  65. Gologan, B., Green, J.R., Alvarez, J., Laskin, J., Cooks, R.G.: Ion/surface reactions and ion soft-landing. PCCP 7, 1490–1500 (2005)

    Article  CAS  Google Scholar 

  66. Bittner, A.M.: Clusters on soft matter surfaces. Surf. Sci. Rep 61, 383–428 (2006)

    Article  CAS  Google Scholar 

  67. Gologan, B., Wiseman, J.M., Cooks, R.G. In: Principles of Mass Spectrometry Applied to Biomolecules. Laskin, J., Lifshitz, C., Eds. John Wiley and Sons., Inc.: (2006)

  68. Laskin, J., Wang, P., Hadjar, O.: Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. PCCP 10, 1079–1090 (2008)

    Article  CAS  Google Scholar 

  69. Wang, P., Laskin, J. In: Ion Beams in Nanoscience and Technology. Hellborg, R., Whitlow, H.J., Zhang, Y., Eds. Springer-Verlag: pp. 37–65 (2009)

  70. Johnson, G.E., Hu, Q.C., Laskin, J.: Soft landing of complex molecules on surfaces. Annu. Rev. Anal. Chem 4, 83–104 (2011)

    Article  CAS  Google Scholar 

  71. Verbeck, G., Hoffmann, W., Walton, B.: Soft-landing preparative mass spectrometry. Analyst 137, 4393–4407 (2012)

    Article  CAS  Google Scholar 

  72. Muylaert, I., Van Der Voort, P.: Supported vanadium oxide in heterogeneous catalysis: elucidating the structure-activity relationship with spectroscopy. PCCP 11, 2826–2832 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy (DOE). N.M.A. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI). G.E.J. acknowledges support from the Linus Pauling Fellowship and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Laskin.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Hasan, N.M., Johnson, G.E. & Laskin, J. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation. J. Am. Soc. Mass Spectrom. 24, 1385–1395 (2013). https://doi.org/10.1007/s13361-013-0683-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0683-0

Key words

Navigation