Skip to main content
Log in

Multiple Mass Analysis Using an Ion Trap Array (ITA) Mass Analyzer

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A novel ion trap array (ITA) mass analyzer with six ion trapping and analyzing channels was investigated. It is capable of analyzing multiple samples simultaneously. The ITA was built with several planar electrodes made of stainless steel and 12 identical parallel zirconia ceramic substrates plated with conductive metal layers. Each two of the opposing ceramic electrode plates formed a boundary of an ion trap channel and six identical ion trapping and analyzing channels were placed in parallel without physical electrode between any two adjacent channels. The electric field distribution inside each channel was studied with simulation. The new design took the advantage of high precision machining attributable to the rigidity of ceramic, and the convenience of surface patterning technique. The ITA system was tested by using a two-channel electrospray ionization source, a multichannel simultaneous quadruple ion guide, and two detectors. The simultaneous analysis of two different samples with two adjacent ITA channels was achieved and independent mass spectra were obtained. For each channel, the mass resolution was tested. Additional ion trap functions such as mass-selected ion isolation and collision-induced dissociation (CID) were also tested. The results show that one ITA is well suited for multiple simultaneous mass analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang, C.Z., Su, Y., Wang, H.Y., Guo, Y.L.: Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion–molecule reactions using the electron-deficient reagent ion CCl 3+. J. Am. Soc. Mass Spectrom. 22, 1839–1850 (2011)

    Article  CAS  Google Scholar 

  2. Huang, T.Y., Kharlamova, A., Liu, J., McLuckey, S.A.: Ion trap collision-induced dissociation of multiply deprotonated RNA: c/y-ions versus (a-B)/w-ions. J. Am. Soc. Mass Spectrom. 19, 1832–1840 (2008)

    Article  CAS  Google Scholar 

  3. Palmer, P.T., Limero, T.F.: Mass spectrometry in the US Space Program: past, present, and future. J. Am. Soc. Mass Spectrom. 12, 656–675 (2001)

    Article  CAS  Google Scholar 

  4. Riter, L.S., Peng, Y., Noll, R.J., Patterson, G.E., Aggerholm, T., Cooks, R.G.: Analytical performance of a miniature cylindricalion trap mass spectrometer. Anal. Chem. 74, 6154–6162 (2002)

    Article  CAS  Google Scholar 

  5. March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)

    Article  CAS  Google Scholar 

  6. Kaiser, R.E., Cooks, R.G., Stafford, G.C., Syka, J.E.P., Hemberger, P.H.: Operation of a quadrupole ion trap mass spectrometer to achieve high mass/charge ratios. Int. J. Mass Spectrom. Ion Processes 106, 79–115 (1991)

    Article  CAS  Google Scholar 

  7. Prentice, B.M., Santini, R.E., McLuckey, S.A.: Adaptation of a 3D quadrupole ion trap for dipolar DC Collisional Activation. J. Am. Soc. Mass Spectrom. 22, 1486–1492 (2011)

    Article  CAS  Google Scholar 

  8. Badman, E.R., Johnson, R.C., Plass, W.R., Cooks, R.G.: A miniature cylindrical quadrupole ion trap: simulation and experiment. Anal. Chem. 70, 4896–4901 (1998)

    Article  CAS  Google Scholar 

  9. Patterson, G.E., Guymon, A.J., Riter, L.S., Everly, M., Griep-Raming, J., Laughlin, B.C., Ouyang, Z., Cooks, R.G.: Miniature cylindrical ion trap mass spectrometer. Anal. Chem. 74, 6145–6153 (2002)

    Article  CAS  Google Scholar 

  10. Wells, J.M., Badman, E.R., Cooks, R.G.: A quadrupole ion trap with cylindrical geometry operated in the mass-selective instability mode. Anal. Chem. 70, 438–444 (1998)

    Article  CAS  Google Scholar 

  11. Wu, G.X., Cooks, R.G., Ouyang, Z.: Geometry optimization for the cylindrical ion trap:field calculations, simulations and experiments. Int. J. Mass Spectrom. 241, 119–132 (2005)

    Article  CAS  Google Scholar 

  12. Laughlin, B.C., Mulligan, C.C., Cooks, R.G.: Atmospheric pressure ionization in a miniature mass spectrometer. Anal. Chem. 77, 2928–2939 (2005)

    Article  CAS  Google Scholar 

  13. Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)

    Article  CAS  Google Scholar 

  14. Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002)

    Article  CAS  Google Scholar 

  15. Douglas, D.J., Frank, A.J., Mao, D.M.: Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24, 1–29 (2005)

    Article  CAS  Google Scholar 

  16. Londry, F.A., Hager, J.W.: Mass selective axial ion ejection from a linear quadrupole ion trap. J. Am. Soc. Mass Spectrom. 14, 1130–1147 (2003)

    Article  CAS  Google Scholar 

  17. Ouyang, Z., Wu, G.X., Song, Y.S., Li, H.Y., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)

    Article  CAS  Google Scholar 

  18. Song, Q.Y., Kothari, S., Senko, M.A., Schwartz, J.C., Amy, J.W., Stafford, G.C., Cooks, R.G., Ouyang, Z.: Rectilinear ion trap mass spectrometer with atmospheric pressure interface and electrospray ionization source. Anal. Chem. 78, 718–725 (2006)

    Article  CAS  Google Scholar 

  19. Zhang, C., Chen, H.W., Guymon, A.J., Wu, G.X., Cooks, R.G., Ouyang, Z.: Instrumentation and methods for ion and reaction monitoring using a non-scanning rectilinear ion trap. Int. J. Mass Spectrom. 255/256, 1–10 (2006)

    Article  Google Scholar 

  20. Wang, L., Xu, F.X., Ding, C.F.: Performance and geometry optimization of the ceramic-based rectilinear ion traps. Rapid Commun. Mass Spectrom. 26, 2068–2074 (2012)

    Article  CAS  Google Scholar 

  21. Fico, M., Yu, M., Ouyang, Z., Cooks, R.G., Chappell, W.J.: Miniaturization and geometry optimization of a polymer-based rectilinear ion trap. Anal. Chem. 79, 8076–8082 (2007)

    Article  CAS  Google Scholar 

  22. Gao, L., Song, Q.Y., Patterson, G.E., Cooks, R.G., Ouyang, Z.: Handheld rectilinear ion trap mass spectrometer. Anal. Chem. 78, 5994–6002 (2006)

    Article  CAS  Google Scholar 

  23. Keil, A., Talaty, N., Janfelt, C., Noll, R.J., Gao, L., Ouyang, Z., Cooks, R.G.: Ambient mass spectrometry with a handheld mass spectrometer at high pressure. Anal. Chem. 79, 7734–7739 (2007)

    Article  CAS  Google Scholar 

  24. Gao, L., Sugiarto, A., Harper, J.D., Cooks, R.G., Ouyang, Z.: Design and characterization of a multisource hand-held tandem mass spectrometer. Anal. Chem. 80, 7198–7205 (2008)

    Article  CAS  Google Scholar 

  25. Ouyang, Z., Noll, R.J., Cooks, R.G.: Hand-held miniature ion trap mass spectrometers. Anal. Chem. 81, 2421–2425 (2009)

    Article  CAS  Google Scholar 

  26. Peng, Y., Austin, D.E.: New approaches to miniaturizing ion trap mass analyzers. Trends Anal. Chem. 30, 1560–1567 (2011)

    Article  CAS  Google Scholar 

  27. Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo ion trap mass spectrometer. Anal. Chem. 79, 2927–2932 (2007)

    Article  CAS  Google Scholar 

  28. Zhang, Z.P., Quist, H., Peng, Y., Hansen, B.J., Wang, J.T., Hawkins, A.R., Austin, D.E.: Effects of higher-order multipoles on the performance of a two-plate quadrupole ion trap mass analyzer. Int. J. Mass Spectrom. 299, 151–157 (2011)

    Article  CAS  Google Scholar 

  29. Ouyang, Z., Badman, E.R., Cooks, R.G.: Characterization of a serial array of miniature cylindrical ion trap mass analyzers. Rapid Commun. Mass Spectrom. 13, 2444–2449 (1999)

    Article  CAS  Google Scholar 

  30. Badman, E.R., Cooks, R.G.: A Parallel miniature cylindrical ion trap array. Anal. Chem. 72, 3291–3297 (2000)

    Article  CAS  Google Scholar 

  31. Tabert, A.M., Griep-Raming, J., Guymon, A.J., Cooks, R.G.: High-thoughput miniature cylindrical ion trap array mass spectrometer. Anal. Chem. 75, 5656–5664 (2003)

    Article  CAS  Google Scholar 

  32. Tabert, A.M., Goodwin, M.P., Duncan, J.S., Fico, C.D., Cooks, R.G.: Multiplexed rectilinear ion trap mass spectrometer for high-throughput analysis. Anal. Chem. 78, 4830–4838 (2006)

    Article  CAS  Google Scholar 

  33. Kothari, S., Song, Q.Y., Xia, Y., Fico, M., Taylor, D., Amy, J.W., Stafford, G., Cooks, R.G.: Multiplexed four-channel rectilinear ion trap mass spectrometer. Anal. Chem. 81, 1570–1579 (2009)

    Article  CAS  Google Scholar 

  34. Li, X.X., Jiang, G.Y., Luo, C., Xu, F.X., Wang, Y.Y., Ding, L., Ding, C.F.: Ion trap array mass analyzer: structure and performance. Anal. Chem. 81, 4840–4846 (2009)

    Article  CAS  Google Scholar 

  35. Ding, L., Sudakov, M., Brancia, F.L., Giles, R., Kumashiro, S.: A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J. Mass Spectrom. 39, 471–484 (2004)

    Article  CAS  Google Scholar 

  36. Zeng, L., Kassel, D.B.: Developments of a fully automated parallel HPLC/mass spectrometry system for the analytical characterization and preparative purification of combinatorial libraries. Anal. Chem. 70, 4380–4388 (1998)

    Article  CAS  Google Scholar 

  37. Schneider, B.B., Douglas, D.J., Chen, D.D.Y.: Multiple sprayer system for high-throughput electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1982–1990 (2002)

    Article  CAS  Google Scholar 

  38. Doroshenko, V.M., Cotter, R.J.: Advanced stored waveform inverse fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 10, 65–73 (1996)

    Article  CAS  Google Scholar 

  39. Chen, L., Chin, T., Wang, L., Ricca, T.L., Marshall, A.G.: Phase-modulated stored waveform inverse Fourier transform excitation for trapped ion mass spectrometry. Anal. Chem. 59, 449–454 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Ministry of Science and Technology of China, for the National Science and Technology Support Program of China (2009BAK60B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Fan Ding.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 477 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Chu, Y., Ling, X. et al. Multiple Mass Analysis Using an Ion Trap Array (ITA) Mass Analyzer. J. Am. Soc. Mass Spectrom. 24, 1420–1427 (2013). https://doi.org/10.1007/s13361-013-0679-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0679-9

Key words

Navigation