Skip to main content
Log in

Gas-Phase Fragmentations of Anions Derived from N-Phenyl Benzenesulfonamides

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

In addition to the well-known SO2 loss, there are several additional fragmentation pathways that gas-phase anions derived from N-phenyl benzenesulfonamides and its derivatives undergo upon collisional activation. For example, N-phenyl benzenesulfonamide fragments to form an anilide anion (m/z 92) by a mechanism in which a hydrogen atom from the ortho position of the benzenesulfonamide moiety is specifically transferred to the charge center. Moreover, after the initial SO2 elimination, the product ion formed undergoes primarily, an inter-annular H2 loss to form a carbazolide anion (m/z 166) because the competing intra-annular H2 loss is significantly less energetically favorable. Results from tandem mass spectrometric experiments conducted with deuterium-labeled compounds confirmed that the inter-ring mechanism is the preferred pathway. Furthermore, N-phenyl benzenesulfonamide and its derivatives also undergo a phenyl radical loss to form a radical ion with a mass-to-charge ratio of 155, which is in violation of the so-called “even-electron rule.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Scheme 3
Figure 4
Figure 5
Figure 6
Scheme 4

Similar content being viewed by others

References

  1. Anand, N.: Sulfonamides and Sulfones. In: Wolff, M.E. (ed.) Burger’s Medicinal Chemistry, 4th edn, pp. 1–40. Wiley, Chichester (1979)

    Google Scholar 

  2. Kang, J.G., Hur, J.H., Choi, S.J., Choi, G.J., Cho, K.Y., Ten, L.N., Park, K.H., Kang, K.Y.: Antifungal activities of N-arylbenzenesulfonamides against phytopathogens and control efficacy on wheat leaf rust and cabbage club root diseases. Biosci. Biotechnol. Biochem. 66, 2677–2682 (2002)

    Article  CAS  Google Scholar 

  3. Li, J.J., Wang, H., Tino, J.A., Robl, J.A., Herpin, T.F., Lawrence, R.M., Biller, S., Jamil, H., Ponticiello, R., Chen, L., Chu, C.-H., Flynn, N., Cheng, D., Zhao, R., Chen, B., Schnur, D., Obermeier, M.T., Sasseville, V., Padmanabha, R., Pike, K., Harrity, T.: 2-Hydroxy-N-arylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorg. Med. Chem. Lett. 17, 3208–3211 (2007)

    Article  CAS  Google Scholar 

  4. Saíz-Urra, L., González, M.P., Collado, I.G., Hemández-Galán, R.: Quantitative structure–activity relationship studies for the prediction of antifungal activity of N-arylbenzenesulfonamides against Botrytis cinerea. J. Mol. Graph. Model. 25, 680–690 (2007)

    Article  Google Scholar 

  5. Stowe, C.M.: The sulfonamides. In: Jones, L.M. (ed.) Veterinary Pharmacology and Therapeutics, pp. 438–502. Iowa State University Press, Ames (1965)

    Google Scholar 

  6. Badoil, L., Benanou, D.: Characterization of volatile and semivolatile compounds in waste landfill leachates using stir bar sorptive extraction-GC/MS. Anal. Bioanal. Chem. 393, 1043–1054 (2009)

    Article  CAS  Google Scholar 

  7. Code of Federal Regulations. Title 21: Food and Drugs. CFR 558.15 (2011)

  8. Zhao, L., Stevens, J.: Determination of sulfonamide antibiotics in bovine liver using agilent bond elut QuEChERS EN kits by LC/MS/MS. Agilent Technologies (2012)

  9. Pleasance, S., Blay, P., Quilliam, M.A., O'Hara, G.: Determination of sulfonamides by liquid chromatography, ultraviolet diode array detection, and ion-spray tandem mass spectrometry with application to cultured salmon flesh. J. Chromatogr. 558, 155–173 (1991)

    Article  CAS  Google Scholar 

  10. Fuh, M.R., Chan, S.A.: Quantitative determination of sulfonamide in meat by liquid chromatography-electrospray-mass spectrometry. Talanta 55, 1127–1139 (2001)

    Article  CAS  Google Scholar 

  11. Wang, Z., Hop, C.E.C.A., Kim, M.-S., Huskey, S.-E.W., Baillie, T.A., Guan, Z.: The unanticipated loss of SO2 from sulfonamides in collision-induced dissociation. Rapid Commun. Mass Spectrom. 17, 81–86 (2003)

    Article  Google Scholar 

  12. Hu, N., Liu, P., Jiang, K., Zhou, Y., Pan, Y.: Mechanism study of SO2 elimination from sulfonamides by negative electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22, 2715–2722 (2008)

    Article  CAS  Google Scholar 

  13. Sun, M., Dai, W., Liu, D.Q.: Fragmentation of aromatic sulfonamides in electrospray ionization mass spectrometry: elimination of SO2 via rearrangement. J. Mass Spectrom. 43, 383–393 (2007)

    Article  Google Scholar 

  14. Xiang, Z.: Mechanism of SO2 elimination from the aromatic sulfonamide anions: a theoretical study. Comp. Theor. Chem. 991, 74–81 (2012)

    Article  CAS  Google Scholar 

  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford (2004)

    Google Scholar 

  16. Becke, A.D.: Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  17. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  18. Foresman, J.B., Frisch, A.E.: Exploring Chemistry with Electronic Structure Methods, 2nd edn, p. 64. Gaussian Inc, Pittsburgh (1996)

    Google Scholar 

  19. Görner, H.: Photoinduced oxygen uptake of diphenylamines in solution and their ring closure revisited. J. Phys. Chem. A 112, 1245–1250 (2008)

    Article  Google Scholar 

  20. Encinas, S., Bosca, F., Miranda, M.A.: Photochemistry of 2,6-dichlorodiphenylamine and 1-chlorocarbazole, the photoactive chromophores of diclofenac, meclofenamic acid, and their major photoproducts. Photochem. Photobiol. 68, 640–645 (1998)

    CAS  Google Scholar 

  21. Karni, M., Mandelbaum, A.: The ‘even-electron rule’. J. Mass Spectrom. 15, 53–64 (1980)

    Article  CAS  Google Scholar 

  22. Chai, Y., Sun, H., Pan, Y., Sun, C.: N-centered odd-electron ions formation from collision-induced dissociation of electrospray ionization generated even-electron ions: single electron transfer via ion/neutral complex in the fragmentation of protonated N,N′-dibenzylpiperazines and protonated N-benzylpiperazines. J. Am. Soc. Mass Spectrom. 22, 1526–1533 (2011)

    Article  CAS  Google Scholar 

  23. Cai, Y., Mo, Z., Rannulu, N.S., Guan, B., Kannupal, S., Gibb, B.C., Cole, R.B.: Characterization of an exception to the ‘even-electron rule’ upon low-energy collision induced decomposition in negative ion electrospray tandem mass spectrometry. J. Mass Spectrom. 45, 235–240 (2010)

    Article  CAS  Google Scholar 

  24. Attygalle, A.B., García-Rubio, S., Ta, J., Meinwald, J.: Collisionally-induced dissociation mass spectra of organic sulfate anions. J. Chem. Soc., Perkin Trans 2, 498–506 (2001)

    Google Scholar 

  25. Yunfeng, C., Shifeng, G., Yuanjiang, P.: A mechanistic study of formation of radical anion from fragmentation of deprotonated N,2-diphenylacetamide derivatives in electrospray ionization tandem mass spectrometry. Acta Chim. Sinica 70, 1805–1811 (2012)

    Article  Google Scholar 

  26. Hu, N., Tu, Y.P., Jiang, K., Pan, Y.: Intramolecular charge transfer in the gas phase: fragmentation of protonated sulfonamides in mass spectrometry. J. Org. Chem. 75, 4244–4250 (2010)

    Article  CAS  Google Scholar 

  27. Crews, P., Rodriguez, J., Jaspers, M.: Organic Structure Analysis, p. 246. Oxford University Press, New York (1998)

    Google Scholar 

  28. Hansch, C., Leo, A., Taft, R.W.: A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jason Bialecki for the assistance provided with preparative TLC work. They are grateful to Bristol-Myers Squibb Pharmaceutical Company (New Brunswick, NJ, USA) for the donation of the Waters Quattro Ultima mass spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athula B. Attygalle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 415 kb)

ESM 2

(PDF 32 kb)

ESM 3

(PDF 438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibbs, J.A., Jariwala, F.B., Weisbecker, C.S. et al. Gas-Phase Fragmentations of Anions Derived from N-Phenyl Benzenesulfonamides. J. Am. Soc. Mass Spectrom. 24, 1280–1287 (2013). https://doi.org/10.1007/s13361-013-0671-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0671-4

Key words

Navigation