Skip to main content
Log in

Mass Recalibration of FT-ICR Mass Spectrometry Imaging Data Using the Average Frequency Shift of Ambient Ions

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Achieving and maintaining high mass measurement accuracy (MMA) throughout a mass spectrometry imaging (MSI) experiment is vital to the identification of the observed ions. However, when using FTMS instruments, fluctuations in the total ion abundance at each pixel due to inherent biological variation in the tissue section can introduce space charge effects that systematically shift the observed mass. Herein we apply a recalibration based on the observed cyclotron frequency shift of ions found in the ambient laboratory environment, polydimethylcyclosiloxanes (PDMS). This calibration method is capable of achieving part per billion (ppb) mass accuracy with relatively high precision for an infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI dataset. Comparisons with previously published mass calibration approaches are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974)

    Article  CAS  Google Scholar 

  2. Makarov, A.: Electrostatic axially harmonic orbital trapping: A high-performance technique of mass analysis. Anal. Chem. 72, 1156–1162 (2000)

    Article  CAS  Google Scholar 

  3. Marshall, A.G., Hendrickson, C.L.: High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1, 579–599 (2008)

    Article  CAS  Google Scholar 

  4. Park, S.-G., Murray, K.K.: Infrared laser ablation sample transfer for on-line liquid chromatography electrospray ionization mass spectrometry. J. Mass Spectrom. 47, 1322–1326 (2012)

    Article  CAS  Google Scholar 

  5. Kertesz, V., Van Berkel, G.J.: Liquid microjunction surface sampling coupled with high-pressure liquid chromatography–electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections. Anal. Chem. 82, 5917–5921 (2010)

    Article  CAS  Google Scholar 

  6. Ovchinnikova, O.S., Kertesz, V., Van Berkel, G.J.: Combining laser ablation/liquid phase collection surface sampling and high-performance liquid chromatography-electrospray ionization-mass spectrometry. Anal. Chem. 83, 1874–1878 (2011)

    Article  CAS  Google Scholar 

  7. Beynon, J.H.: Qualitative analysis of organic compounds by mass spectrometry. Nature 174, 735–737 (1954)

    Article  CAS  Google Scholar 

  8. Guan, S., Marshall, A.G., Scheppele, S.E.: Resolution and chemical formula identification of aromatic hydrocarbons and aromatic compounds containing sulfur, nitrogen, or oxygen in petroleum distillates and refinery streams. Anal. Chem. 68, 46–71 (1996)

    Article  CAS  Google Scholar 

  9. Herniman, J., Langley, G., Bristow, T., O’Connor, G.: The validation of exact mass measurements for small molecules using FT-ICRMS for improved confidence in the selection of elemental formulas. J. Am. Soc. Mass Spectrom. 16, 1100–1108 (2005)

    Article  CAS  Google Scholar 

  10. Kim, S., Rodgers, R.P., Marshall, A.G.: Truly “exact” mass: Elemental composition can be determined uniquely from molecular mass measurement at ∼0.1 mDa accuracy for molecules up to ∼500 Da. Int. J. Mass Spectrom. 251, 260–265 (2006)

    Article  CAS  Google Scholar 

  11. Yongdong, W.: Improving elemental composition determination. Pharmaceut. Technol. Eur. 19, 51–57 (2007)

    Google Scholar 

  12. Hipple, J.A., Sommer, H., Thomas, H.A.: A precise method of determining the faraday by magnetic resonance. Phys. Rev. 76, 1877–1878 (1949)

    Article  Google Scholar 

  13. Beauchamp, J.L., Armstrong, J.T.: An ion ejection technique for the study of ion-molecule reactions with ion cyclotron resonance spectroscopy. Rev. Sci. Instrum. 40, 123–128 (1969)

    Article  CAS  Google Scholar 

  14. Ledford, E.B., Ghaderi, S., White, R.L., Spencer, R.B., Kulkarni, P.S., Wilkins, C.L., Gross, M.L.: Exact mass measurement by Fourier transform mass spectrometry. Anal. Chem. 52, 463–468 (1980)

    Article  CAS  Google Scholar 

  15. Jeffries, J.B., Barlow, S.E., Dunn, G.H.: Theory of space-charge shift of ion cyclotron resonance frequencies. Int. J. Mass Spectrom. Ion Process. 54, 169–187 (1983)

    Article  CAS  Google Scholar 

  16. Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M., Graham Cooks, R.: The Orbitrap: A new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005)

    Article  CAS  Google Scholar 

  17. Makarov, A., Denisov, E., Lange, O., Horning, S.: Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom. 17, 977–982 (2006)

    Article  CAS  Google Scholar 

  18. Kharchenko, A., Vladimirov, G., Heeren, R., Nikolaev, E.: Performance of Orbitrap mass analyzer at various space charge and non-ideal field conditions: Simulation approach. J. Am. Soc. Mass Spectrom. 23, 977–987 (2012)

    Article  CAS  Google Scholar 

  19. Belov, M.E., Zhang, R., Strittmatter, E.F., Prior, D.C., Tang, K., Smith, R.D.: Automated gain control and internal calibration with external ion accumulation capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance. Anal. Chem. 75, 4195–4205 (2003)

    Article  CAS  Google Scholar 

  20. Belov, M.E., Rakov, V.S., Nikolaev, E.N., Goshe, M.B., Anderson, G.A., Smith, R.D.: Initial implementation of external accumulation liquid chromatography/electrospray ionization Fourier transform ion cyclotron resonance with automated gain control. Rapid Commun. Mass Spectrom. 17, 627–636 (2003)

    Article  CAS  Google Scholar 

  21. Syka, J.E.P., Marto, J.A., Bai, D.L., Horning, S., Senko, M.W., Schwartz, J.C., Ueberheide, B., Garcia, B., Busby, S., Muratore, T., Shabanowitz, J., Hunt, D.F.: Novel linear quadrupole ion trap/FT mass spectrometer: Performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 3, 621–626 (2004)

    Article  CAS  Google Scholar 

  22. Schwartz, J.C.Z., Zhou, X.-G., Brier, M.E.: Method and apparatus of increasing dynamic range and sensitivity of a mass spectrometer. US Patent 5,572,022, Nov. 5, 1996

  23. Schwartz, J.C.K., Viatcheslav V.: Automatic gain control (AGC) method for an ion trap and a temporally non-uniform ion beam. US Patent 7,960,690 B2, June 14, 2011

  24. Strupat, K., Kovtoun, V., Bui, H., Viner, R., Stafford, G., Horning, S.: MALDI produced ions inspected with a linear ion trap-Orbitrap hybrid mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1451–1463 (2009)

    Article  CAS  Google Scholar 

  25. Dreisewerd, K., Berkenkamp, S., Leisner, A., Rohlfing, A., Menzel, C.: Fundamentals of matrix-assisted laser desorption/ionization mass spectrometry with pulsed infrared lasers. Int. J. Mass Spectrom. 226, 189–209 (2003)

    Article  CAS  Google Scholar 

  26. Francl, T.J., Sherman, M.G., Hunter, R.L., Locke, M.J., Bowers, W.D., McIver Jr., R.T.: Experimental determination of the effects of space charge on ion cyclotron resonance frequencies. Int. J. Mass Spectrom. Ion Process. 54, 189–199 (1983)

    Article  CAS  Google Scholar 

  27. Ledford, E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56, 2744–2748 (1984)

    Article  CAS  Google Scholar 

  28. Shi, S.D.H., Drader, J.J., Freitas, M.A., Hendrickson, C.L., Marshall, A.G.: Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 195/196, 591–598 (2000)

    Article  CAS  Google Scholar 

  29. Wang, M., Marshall, A.G.: Mass shifts induced by negative frequency peaks in linearly polarized Fourier transform ion cyclotron resonance signals. Int. J. Mass Spectrom. Ion Process. 86, 31–51 (1988)

    Article  CAS  Google Scholar 

  30. Brown, C.E.S., Martin, J.C.: The present status and prospects for Fourier transform-ion cyclotron resonance mass spectrometry. Spectrosc. World 2, 24–30 (1990)

    Google Scholar 

  31. Masselon, C., Tolmachev, A., Anderson, G., Harkewicz, R., Smith, R.: Mass measurement errors caused by “local” frequency perturbations in FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 99–106 (2002)

    Article  CAS  Google Scholar 

  32. Easterling, M.L., Mize, T.H., Amster, I.J.: Routine part-per-million mass accuracy for high- mass ions: Space-charge effects in MALDI FT-ICR. Anal. Chem. 71, 624–632 (1999)

    Article  CAS  Google Scholar 

  33. Muddiman, D.C., Oberg, A.L.: Statistical evaluation of internal and external mass calibration laws utilized in Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 77, 2406–2414 (2005)

    Article  CAS  Google Scholar 

  34. Williams, D.K., Muddiman, D.C.: Parts-per-billion mass measurement accuracy achieved through the combination of multiple linear regression and automatic gain control in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 79, 5058–5063 (2007)

    Article  CAS  Google Scholar 

  35. Williams Jr., D.K., Chadwick, M.A., Williams, T.I., Muddiman, D.C.: Calibration laws based on multiple linear regression applied to matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Mass Spectrom. 43, 1659–1663 (2008)

    Article  CAS  Google Scholar 

  36. Williams, D., Kovach, A., Muddiman, D., Hanck, K.: Utilizing artificial neural networks in matlab to achieve parts-per-billion mass measurement accuracy with a Fourier transform ion cyclotron resonance mass spectrometer. J. Am. Soc. Mass Spectrom. 20, 1303–1310 (2009)

    Article  CAS  Google Scholar 

  37. Wineland, D., Dehmelt, H.: Line shifts and widths of axial, cyclotron and G-2 resonances in tailored, stored electron (ion) cloud. Int. J. Mass Spectrom. Ion Phys. 16, 338–342 (1975)

    Article  CAS  Google Scholar 

  38. Chen, S.-P., Comisarow, M.B.: Simple physical models for coulomb-induced frequency shifts and coulomb-induced inhomogenous broadening for like and unlike ions in fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 5, 450–455 (1991)

    Article  CAS  Google Scholar 

  39. Chen, S.-P., Comisarow, M.B.: Modeling coulomb effects in Fourier-transform ion cyclotron resonance mass spectrometry by charged disks and charged cylinders. Rapid Commun. Mass Spectrom. 6, 1–3 (1992)

    Article  Google Scholar 

  40. Wong, R.L., Amster, I.J.: Experimental evidence for space-charge effects between ions of the same mass-to-charge in Fourier-transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 265, 99–105 (2007)

    Article  CAS  Google Scholar 

  41. Leach, F., Kharchenko, A., Heeren, R., Nikolaev, E., Amster, I.: Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 203–208 (2010)

    Article  CAS  Google Scholar 

  42. Haas, W., Faherty, B.K., Gerber, S.A., Elias, J.E., Beausoleil, S.A., Bakalarski, C.E., Li, X., Villén, J., Gygi, S.P.: Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell. Proteom. 5, 1326–1337 (2006)

    Article  CAS  Google Scholar 

  43. Zhang, J., Ma, J., Dou, L., Wu, S., Qian, X., Xie, H., Zhu, Y., He, F.: Mass measurement errors of Fourier-transform mass spectrometry (ftms): Distribution, recalibration, and application. J. Proteome Res. 8, 849–859 (2009)

    Article  CAS  Google Scholar 

  44. Beu, S., Senko, M., Quinn, J., McLafferty, F.: Improved Fourier-transform ion-cyclotron-resonance mass spectrometry of large biomolecules. J. Am. Soc. Mass Spectrom. 4, 190–192 (1993)

    Article  CAS  Google Scholar 

  45. Wu, Q.: Multistage accurate mass spectrometry: A “basket in a basket” approach for structure elucidation and its application to a compound from combinatorial synthesis. Anal. Chem. 70, 865–872 (1998)

    Article  CAS  Google Scholar 

  46. Burton, R.D., Matuszak, K.P., Watson, C.H., Eyler, J.R.: Exact mass measurements using a 7 tesla Fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment. J. Am. Soc. Mass Spectrom. 10, 1291–1297 (1999)

    Article  CAS  Google Scholar 

  47. O’Connor, P.B., Costello, C.E.: Internal calibration on adjacent samples (InCAS) with Fourier transform mass spectrometry. Anal. Chem. 72, 5881–5885 (2000)

    Article  Google Scholar 

  48. Hannis, J., Muddiman, D.: A dual electrospray ionization source combined with hexapole accumulation to achieve high mass accuracy of biopolymers in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 11, 876–883 (2000)

    Article  CAS  Google Scholar 

  49. Flora, J.W., Hannis, J.C., Muddiman, D.C.: High-mass accuracy of product ions produced by sORI-CID using a dual electrospray ionization source coupled with FTICR mass spectrometry. Anal. Chem. 73, 1247–1251 (2001)

    Article  CAS  Google Scholar 

  50. Null, A.P., Muddiman, D.C.: Determination of a correction to improve mass measurement accuracy of isotopically unresolved polymerase chain reaction amplicons by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 17, 1714–1722 (2003)

    Article  CAS  Google Scholar 

  51. Herniman, J.M., Bristow, T.W., O’Connor, G., Jarvis, J., Langley, G.J.: Improved precision and accuracy for high-performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometric exact mass measurement of small molecules from the simultaneous and controlled introduction of internal calibrants via a second electrospray nebuliser. Rapid Commun. Mass Spectrom. 18, 3035–3040 (2004)

    Article  CAS  Google Scholar 

  52. Young, N.L., Sisto, M.C., Young, M.N., Grant, P.G., Killilea, D.W., LaMotte, L., Wu, K.J.J., Lebrilla, C.B.: Steady-state asymmetric nanospray dual ion source for accurate mass determination within a chromatographic separation. Anal. Chem. 79, 5711–5718 (2007)

    Article  CAS  Google Scholar 

  53. Williams, D., Hawkridge, A., Muddiman, D.: Sub parts-per-million mass measurement accuracy of intact proteins and product ions achieved using a dual electrospray ionization quadrupole fourier transform ion cyclotron resonance mass spectrometer. J. Am. Soc. Mass Spectrom. 18, 1–7 (2007)

    Article  CAS  Google Scholar 

  54. Smith, D., Aizikov, K., Duursma, M., Giskes, F., Spaanderman, D.-J., McDonnell, L., O’Connor, P., Heeren, R.: An external matrix-assisted laser desorption ionization source for flexible FT-ICR mass spectrometry imaging with internal calibration on adjacent samples. J. Am. Soc. Mass Spectrom. 22, 130–137 (2011)

    Article  CAS  Google Scholar 

  55. Bruce, J., Anderson, G., Brands, M., Pasa-Tolic, L., Smith, R.: Obtaining more accurate Fourier transform ion cyclotron resonance mass measurements without internal standards using multiply charged ions. J. Am. Soc. Mass Spectrom. 11, 416–421 (2000)

    Article  CAS  Google Scholar 

  56. Yanofsky, C.M., Bell, A.W., Lesimple, S., Morales, F., Lam, T.T., Blakney, G.T., Marshall, A.G., Carrillo, B., Lekpor, K., Boismenu, D., Kearney, R.E.: Multicomponent internal recalibration of an LC-FTICR-MS analysis employing a partially characterized complex peptide mixture: Systematic and random errors. Anal. Chem. 77, 7246–7254 (2005)

    Article  CAS  Google Scholar 

  57. de Godoy, L., Olsen, J., de Souza, G., Li, G., Mortensen, P., Mann, M.: Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol. 7, R50:1–15 (2006)

    Google Scholar 

  58. Palmblad, M., Bindschedler, L.V., Gibson, T.M., Cramer, R.: Automatic internal calibration in liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry of protein digests. Rapid Commun. Mass Spectrom. 20, 3076–3080 (2006)

    Article  CAS  Google Scholar 

  59. Wong, R.L., Amster, I.J.: Sub part-per-million mass accuracy by using stepwise-external calibration in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1681–1691 (2006)

    Article  CAS  Google Scholar 

  60. Savory, J.J., Kaiser, N.K., McKenna, A.M., Xian, F., Blakney, G.T., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G.: Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a “walking” calibration equation. Anal. Chem. 83, 1732–1736 (2011)

    Article  CAS  Google Scholar 

  61. Jing, L., Amster, I.: An improved calibration method for the matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resononance analysis of 15N-metabolically- labeled proteome digests using a mass difference approach. Eur. J. Mass Spectrom. 18, 269–277 (2012)

    Article  CAS  Google Scholar 

  62. Schlosser, A., Volkmer-Engert, R.: Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry. J. Mass Spectrom. 38, 523–525 (2003)

    Article  CAS  Google Scholar 

  63. Olsen, J.V., de Godoy, L.M.F., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., Mann, M.: Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteom. 4, 2010–2021 (2005)

    Article  CAS  Google Scholar 

  64. Gorshkov, M., Good, D., Lyutvinskiy, Y., Yang, H., Zubarev, R.: Calibration function for the orbitrap FTMS accounting for the space charge effect. J. Am. Soc. Mass Spectrom. 21, 1846–1851 (2010)

    CAS  Google Scholar 

  65. Lee, K.A., Farnsworth, C., Yu, W., Bonilla, L.E.: Twemty-four-hour lock mass protection. J. Proteome Res. 10, 880–885 (2010)

    Article  Google Scholar 

  66. Wenger, C.D., McAlister, G.C., Xia, Q., Coon, J.J.: Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled Orbitrap mass spectrometer. Mol. Cell. Proteom. 9, 754–763 (2010)

    Article  CAS  Google Scholar 

  67. Sampson, J., Hawkridge, A., Muddiman, D.: Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1712–1716 (2006)

    Article  CAS  Google Scholar 

  68. Robichaud, G., Barry, J., Garrard, K., Muddiman, D.: Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 92–100 (2013)

    Article  CAS  Google Scholar 

  69. Barry, J.A., Muddiman, D.C.: Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun. Mass Spectrom. 25, 3527–3536 (2011)

    Article  CAS  Google Scholar 

  70. Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.: ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008)

    Article  CAS  Google Scholar 

  71. Giancaspro, C., Comisarow, M.B.: Exact interpolation of Fourier transform spectra. Appl. Spectrosc. 37, 153–166 (1983)

    Article  CAS  Google Scholar 

  72. Verdun, F.R., Ricca, T.L., Marshall, A.G.: Beating the nyquist limit by means of interleaved alternated delay sampling: Extension of lower mass limit in direct-mode Fourier transform ion cyclotron resonance mass spectrometry. Appl. Spectrosc. 42, 199–203 (1988)

    Article  CAS  Google Scholar 

  73. Robichaud, G., Garrard, K., Barry, J., Muddiman, D.: MSiReader: An open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24, 718–721 (2013)

    Google Scholar 

  74. Sampson, J.S., Hawkridge, A.M., Muddiman, D.C.: Direct characterization of intact polypeptides by matrix-assisted laser desorption electrospray ionization quadrupole Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 21, 1150–1154 (2007)

    Article  CAS  Google Scholar 

  75. Smith, D., Kharchenko, A., Konijnenburg, M., Klinkert, I., Paša-Tolić, L., Heeren, R.: Advanced mass calibration and visualization for FT-ICR mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 23, 1865–1872 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Reid Groseclose, David Wagner, and Stephen Castellino at GlaxoSmithKline for the Tykerb dosed liver tissue sections as well as Troy Ghashghei from NCSU College of Veterinary Medicine for the mouse brain tissue. The authors gratefully acknowledge the financial support received from the National Institutes of Health (R01GM087964), GlaxoSmithKline, the W. M. Keck Foundation, and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4494 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, J.A., Robichaud, G. & Muddiman, D.C. Mass Recalibration of FT-ICR Mass Spectrometry Imaging Data Using the Average Frequency Shift of Ambient Ions. J. Am. Soc. Mass Spectrom. 24, 1137–1145 (2013). https://doi.org/10.1007/s13361-013-0659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0659-0

Key words

Navigation