Skip to main content
Log in

Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/z 139 to ca. 1000 in the positive mode and m/z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nizkorodov, S.A., Laskin, J., Laskin, A.: Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys. Chem. Chem. Phys. 13, 3612–3629 (2011)

    Article  CAS  Google Scholar 

  2. Wisthaler, A., Tamás, G., Wyon, D.P., Strøm-Tejsen, P., Space, D., Beauchamp, J., Hansel, A., Märk, T.D., Weschler, C.J.: Products of ozone-initiated chemistry in a simulated aircraft environment. Environ. Sci. Technol. 39, 4823–4832 (2005)

    Article  CAS  Google Scholar 

  3. McLucky, S.A., Glish, G.L., Asano, K.G., Grant, B.C.: Atmospheric sampling glow-discharge ionization source for the determination of trace organic compounds in ambient air. Anal. Chem. 60, 2220–2227 (1988)

    Article  Google Scholar 

  4. Dalton, C.N., Jaoui, M., Kamens, R.M., Glish, G.L.: Continuous real-time analysis of products from the reaction of some monoterpenes with ozone using atmospheric sampling glow discharge ionization coupled to a quadrupole ion trap mass spectrometer. Anal. Chem. 77, 3156–3163 (2005)

    Article  CAS  Google Scholar 

  5. Calogirou, A., Larsen, B.R., Kotzias, D.: Gas-phase terpene oxidation products: a review. Atmos. Environ. 33, 1423–1439 (1999)

    Article  CAS  Google Scholar 

  6. Weschler, C.J.: Ozone in indoor environments: concentration and chemistry. Indoor Air 10, 269–288 (2000)

    Article  CAS  Google Scholar 

  7. Nørgaard, A.W., Nøjgaard, J.K., Larsen, K., Sporring, S., Wilkins, C.K., Clausen, P.A., Wolkoff, P.: Secondary limonene endo-ozonide: A major product from gas-phase ozonolysis of R-(+)-limonene at ambient temperature. Atmos. Environ. 40, 3460–3466 (2006)

    Article  Google Scholar 

  8. Nøjgaard, J.K., Nørgaard, A.W., Wolkoff, P.: On-line analysis of secondary ozonides from cyclohexene and D-limonene ozonolysis using atmospheric sampling townsend discharge ionization mass spectrometry. Atmos. Environ. 41, 8345–8354 (2007)

    Article  Google Scholar 

  9. Forester, C.D., Wells, J.R.: Yields of carbonyl products from gas-phase reactions of fragrance compounds with OH radical and ozone. Environ. Sci. Technol. 43, 3561–3568 (2009)

    Article  CAS  Google Scholar 

  10. Wolkoff, P., Wilkins, C.K., Clausen, P.A., Nielsen, G.D.: Organic compounds in office environments—sensory irritation, odor, measurements, and the role of reactive chemistry. Indoor Air 16, 7–19 (2006)

    Article  CAS  Google Scholar 

  11. Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prévot, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. Discuss. 9, 3555–3762 (2009)

    Article  Google Scholar 

  12. Glasius, M., Lahaniati, M., Calogirou, A., Di Bella, D., Jensen, N.R., Hjorth, J., Kotzias, D., Larsen, B.R.: Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ. Sci. Technol. 34, 1001–1010 (2000)

    Article  CAS  Google Scholar 

  13. Lee, A.G., Goldstein A.H., Keywood, M.D., Gao, S., Varutbangkul, V., Bahreini, R., Nga, L., Flagan, R.C., Seinfeld, J.H.: Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J. Geophys. Res. 111, D17305 (2006)

  14. Vartiainen, E., Kulmala, M., Ruuskanen, J., Taipale, R., Rinne, J., Vehkamäki, H.: Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation. Atmos. Environ. 40, 7882–7892 (2006)

    Article  CAS  Google Scholar 

  15. Walser, M.L., Desyaterik, Y., Laskin, J., Laskin, A., Nizkorodov, S.A.: High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys. Chem. Chem. Phys. 10, 1009–1022 (2008)

    Article  CAS  Google Scholar 

  16. Bateman, A.P., Nizkorodov, S.A., Laskin, J., Laskin, A.: Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Phys. Chem. Chem. Phys. 11, 7931–7942 (2009)

    Article  CAS  Google Scholar 

  17. Laskin, J., Laskin, A., Roach, P.J., Slysz, G.W., Anderson, G.A., Nizkorodov, S.A., Bones, D.L., Nguyen, L.Q.: High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 82, 2048–2058 (2010)

    Article  CAS  Google Scholar 

  18. Harper, J.D., Charipar, N.A., Mulligan, C.C., Zhang, X., Cooks, R.G., Ouyang, Z.: Low-temperature plasma probe for ambient desorption ionization. Anal. Chem. 80, 9097–9104 (2008)

    Article  CAS  Google Scholar 

  19. Chan, G.C.Y., Shelley, J.T., Wiley, J.S., Engelhard, C., Jackson, A.U., Cooks, R.G., Hieftje, G.M.: Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal. Chem. 83, 3675–3686 (2011)

    Article  CAS  Google Scholar 

  20. Chan, G.C.Y., Shelley, J.T., Jackson, A.U., Wiley, J.S., Engelhard, C., Cooks, R.G., Hieftje, G.M.: Spectroscopic plasma diagnostics on a low-temperature plasma probe for ambient mass spectrometry. J. Anal. Atom. Spectrom. 26, 1434–1444 (2011)

    Article  CAS  Google Scholar 

  21. Cody, R.B., Laramee, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)

    Article  CAS  Google Scholar 

  22. Cody, R.B.: Observation of Molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal. Chem. 81, 1101–1107 (2008)

    Article  Google Scholar 

  23. Garcia-Reyes, J.F., Harper, J.D., Salazar, G.A., Charipar, N.A., Ouyang, Z., Cooks, R.G.: Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Anal. Chem. 83, 1084–1092 (2011)

    Article  CAS  Google Scholar 

  24. Wolinsky, J., Barker, W.: The synthesis of 1-acetyl-4-isopropyl-1-cyclopentene. J. Am. Chem. Soc. 82, 636–638 (1960)

    Article  CAS  Google Scholar 

  25. Atkinson, R., Hasegawa, D., Aschmann, S.M.: Rate constants for the gas-phase reactions of O 3 with a series of monoterpenes and related compounds at 296 ± 2 K. Int. J. Chem. Kin. 22, 871–887 (1990)

    Article  CAS  Google Scholar 

  26. Grosjean, E., Grosjean, D.: Gas phase reaction of alkenes with ozone: Formation yields of primary carbonyls and biradicals. Environ. Sci. Technnol. 31, 2421–2427 (1997)

    Article  CAS  Google Scholar 

  27. Hakola, H., Arey, J., Aschmann, S.M., Atkinson, R.: Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes. J. Atmos. Chem. 18, 75–102 (1994)

    Article  CAS  Google Scholar 

  28. Aschmann, S.M., Arey, J., Atkinson, R.: OH radical formation from the gas-phase reactions of O3 with a series of terpenes. Atmos. Environ. 36, 4347–4355 (2002)

    Article  CAS  Google Scholar 

  29. Griesbaum, K., Miclaus, V., Jung, I.C.: Isolation of ozonides from gas-phase ozonolyses of terpenes. Environ. Sci. Technol. 32, 647–649 (1998)

    Article  CAS  Google Scholar 

  30. Leungsakul, S., Jaoul, M., Kamens, R.: Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of D-limonene with ozone. Environ. Sci. Technol. 39, 9583–9594 (2005)

    Article  CAS  Google Scholar 

  31. Tolocka, M.P., Jang, M., Ginter, J.M., Cox, F.J., Kamens, R.M., Johnston, M.V.: Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 38, 1428–1434 (2004)

    Article  CAS  Google Scholar 

  32. Atkinson, R., Aschmann, S.M., Arey, J., Shorees, B.: Formation of OH radicals in the gas phase reactions of O 3 with a series of terpenes. J. Geophys. Res. 97, 6065–6073 (1992)

    Article  CAS  Google Scholar 

  33. Cohen, S.L.: Ozone in ambient air as a source of adventitious oxidation. A mass spectrometric study. Anal. Chem. 78, 4352–4362 (2006)

    Article  CAS  Google Scholar 

  34. Ellis, S.R., Hughes, J.R., Mitchell, T.W., Panhuis, M.I.H., Blanksby, S.J.: Using ambient ozone for assignment of double bond position in unsaturated lipids. Analyst 137, 1100–1110 (2012)

    Article  CAS  Google Scholar 

  35. Kwok, E.S.C., Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure–reactivity relationship: an update. Atmos. Environ. 29, 1685–1695 (1995)

    Article  CAS  Google Scholar 

  36. Nørgaard, A.W., Nøjgaard, J.K., Clausen, P.A., Wolkoff, P.: Secondary ozonides of substituted cyclohexenes: A new class of pollutants characterized by collision-induced dissociation mass spectrometry using negative chemical ionization. Chemosphere 70, 2032–2038 (2008)

    Article  Google Scholar 

  37. Vibenholt, A., Nørgaard, A.W., Clausen, P.A., Wolkoff, P.: Formation and stability of secondary ozonides from monoterpenes studied by mass spectrometry. Chemosphere 76, 572–577 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support was obtained from the project “OFFICAIR” (on the reduction of health effects from combined exposure to indoor air pollutants in modern offices) funded by the European Union 7th Framework (Agreement 265267) under the theme: ENV.2010.1.2.2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asger W. Nørgaard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nørgaard, A.W., Vibenholt, A., Benassi, M. et al. Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1090–1096 (2013). https://doi.org/10.1007/s13361-013-0648-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0648-3

Key words

Navigation