Skip to main content
Log in

Comparative Analysis of Oxy-Hemoglobin and Aquomet-Hemoglobin by Hydrogen/Deuterium Exchange Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The function of hemoglobin (Hb) as oxygen transporter is mediated by reversible O2 binding to Fe(2+) heme in each of the α and β subunits. X-ray crystallography revealed different subunit arrangements in oxy-Hb and deoxy-Hb. The deoxy state is stabilized by additional contacts, causing a rigidification that results in strong protection against hydrogen/deuterium exchange (HDX). Aquomet-Hb is a dysfunctional degradation product with four water-bound Fe(3+) centers. Heme release from aquomet-Hb is relatively facile, triggering oxidative damage of membrane lipids. Aquomet-Hb crystallizes in virtually the same conformation as oxy-Hb. Hence, it is commonly implied that the solution-phase properties of aquomet-Hb should resemble those of the oxy state. This work compares the structural dynamics of oxy-Hb and aquomet-Hb by HDX mass spectrometry (MS). It is found that the aquomet state exhibits a solution-phase structure that is significantly more dynamic, as manifested by elevated HDX levels. These enhanced dynamics affect the aquomet α and β subunits in a different fashion. The latter undergoes global destabilization, whereas the former shows elevated HDX levels only in the heme binding region. It is proposed that these enhanced dynamics play a role in facilitating heme release from aquomet-Hb. Our findings should be of particular interest to the MS community because oxy-Hb and aquomet-Hb serve as widely used test analytes for probing the relationship between biomolecular structure in solution and in the gas phase. We are not aware of any prior comparative HDX/MS experiments on oxy-Hb and aquomet-Hb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eaton, W.A., Henry, E.R., Hofrichter, J., Mozzarelli, A.: Is cooperative oxygen binding by hemoglobin really understood. Nat. Struct. Biol. 6, 351–358 (1999)

    Article  CAS  Google Scholar 

  2. Bellelli, A., Brunori, M.: Hemoglobin allostery: Variations on the theme. Biochim. Biophys. Acta 1807, 1262–1272 (2011)

    Article  CAS  Google Scholar 

  3. Perutz, M.F., Wilkinson, A.J., Paoli, M., Dodson, G.G.: The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998)

    Article  CAS  Google Scholar 

  4. Yonetani, T., Laberge, M.: Protein dynamics explain the allosteric behaviors of hemoglobin. Biochim. Biophys. Acta 1784, 1146–1158 (2008)

    Article  CAS  Google Scholar 

  5. Dickerson, R.E., Geis, I.: Hemoglobin: Structure, Function, Evolution, and Pathology. The Benjamin/Cummings Publishing Company Inc, Menlo Park, CA (1983)

    Google Scholar 

  6. Kluger, R.: Red cell substitutes from hemoglobin—do we start all over again? Curr. Opin. Chem. Biol. 14, 538–543 (2010)

    Article  CAS  Google Scholar 

  7. Antonini, E., Brunori, M.: Hemoglobin and Myoglobin in Their Reactions with Ligands, vol. 21. North-Holland Publishing Company, Amsterdam and London (1971)

    Google Scholar 

  8. Aranda IV, R., Cai, H., Worley, C.E., Levin, E.J., Li, R., Olson, J.S., Phillips Jr., G.N., Richard, M.P.: Structural analysis of fish versus mammalian hemoglobins: Effect of the heme pocket enviornment on autooxidation and hemin loss. Proteins 75, 217–230 (2009)

    Article  CAS  Google Scholar 

  9. Kim, K.H., Muniyappan, S., Oang, K.Y., Kim, J.G., Nozawa, S., Sato, T., Koshihara, S.Y., Henning, R., Kosheleva, I., Ki, H., Kim, Y., Kim, T.W., Kim, J., Adachi, S., Ihee, H.: Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering. J. Am. Chem. Soc. 134, 7001–7008 (2012)

    Article  CAS  Google Scholar 

  10. Fischer, S., Olsen, K.W., Nam, K., Karplus, M.: Unsuspected pathway of the allosteric transition in hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 108, 5608–5613 (2011)

    Article  CAS  Google Scholar 

  11. Safo, M.K., Abraham, D.J.: The enigma of the liganded hemoglobin end state: A novel quaternary structure of human carbonmonoxy hemoglobin. Biochemistry 44, 8347–8359 (2005)

    Article  CAS  Google Scholar 

  12. Dey, S., Chakrabarti, P., Janin, J.: A survey of hemoglobin quaternary structures. Proteins 79, 2861–2870 (2011)

    Article  CAS  Google Scholar 

  13. Makowski, L., Bardhan, J., Gore, D., LaI, J., Mandava, S., Park, S., Rodi, D.J., Ho, N.T., Ho, C., Fischetti, R.F.: WAXS studies of the structural diversity of hemoglobin in solution. J. Mol. Biol. 408, 909–921 (2011)

    Article  CAS  Google Scholar 

  14. Lukin, J.A., Ho, C.: The structure-function relationship of hemoglobin in solution at atomic resolution. Chem. Rev. 104, 1219–1230 (2004)

    Article  CAS  Google Scholar 

  15. Song, X.J., Yuan, Y., Simplaceanu, V., Sahu, S.C., Ho, N.T., Ho, C.: A comparative NMR study of the polypeptide backbone dynamics of hemoglobin in the deoxy and carbonmonoxy forms. Biochemistry 46, 6795–6803 (2007)

    Article  CAS  Google Scholar 

  16. Chernushevich, I.V., Loboda, A.V., Thomson, B.A.: An introduction to quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 36, 849–865 (2001)

    Article  CAS  Google Scholar 

  17. Edwards, R.L., Creese, A.J., Baumert, M., Griffiths, P., Bunch, J., Cooper, H.J.: Hemoglobin variant analysis via direct surface sampling of dried blood spots coupled with high-resolution mass spectrometry. Anal. Chem. 83, 2265–2270 (2011)

    Google Scholar 

  18. Li, Y.-T., Hsieh, Y.-L., Henion, J.D., Ganem, B.: Studies on heme binding in myoglobin, hemoglobin, and cytochrome c by ion spray mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 631–637 (1993)

    Article  CAS  Google Scholar 

  19. Light-Wahl, K.J., Schwartz, B.L., Smith, R.D.: Observation of the noncovalent quaternary association of proteins by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 116, 5271–5278 (1994)

    Article  CAS  Google Scholar 

  20. Lemaire, D., Marie, G., Serani, L., Larprevote, O.: Stabilization of gas-phase noncovlanet macromolecular complexes in electrospray mass spectrometry using aqueous triethylammonium bicarbonate buffer. Anal. Chem. 73, 1699–1706 (2001)

    Article  CAS  Google Scholar 

  21. Loo, J.A.: Electrospray ionization mass spectrometry: A technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186 (2000)

    Article  CAS  Google Scholar 

  22. Heck, A.J.R.: Native mass spectrometry: A bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008)

    Article  CAS  Google Scholar 

  23. Benesch, J.L.P., Ruotolo, B.T., Simmons, D.A., Robinson, C.V.: Protein complexes in the gas phase: Technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007)

    Article  CAS  Google Scholar 

  24. Versluis, C., Heck, A.J.R.: Gas-phase dissociation of hemoglobin. Int. J. Mass Spectrom. 210/211, 637–649 (2001)

    Article  CAS  Google Scholar 

  25. Schmidt, A., Karas, M.: The Influence of electrostatic interactions on the detection of heme-globin complexes in ESI-MS. J. Am. Soc. Mass Spectrom. 12, 1092–1098 (2001)

    Article  CAS  Google Scholar 

  26. Sciuto, S.V., Liu, J., Konermann, L.: An electrostatic charge partitioning model for the dissociation of protein complexes in the gas phase. J. Am. Soc. Mass Spectrom. 22, 1679–1689 (2011)

    Article  CAS  Google Scholar 

  27. Kang, Y., Terrier, P., Douglas, D.J.: Mass spectra and ion collision cross sections of hemoglobin. J. Am. Soc. Mass Spectrom. 22, 290–299 (2011)

    Article  CAS  Google Scholar 

  28. Kang, Y., Douglas, D.J.: Gas-phase ions of human hemoglobin A, F, and S. J. Am. Soc. Mass Spectrom. 22, 1187–1196 (2011)

    Google Scholar 

  29. Scarff, C.A., Patel, V.J., Thalassinos, K., Scrivens, J.H.: Probing hemoglobin structure by means of traveling-wave ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 625–631 (2009)

    Article  CAS  Google Scholar 

  30. Griffith, W.P., Kaltashov, I.A.: Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry. Biochemistry 42, 10024–10033 (2003)

    Article  CAS  Google Scholar 

  31. Griffith, W.P., Kaltashov, I.A.: Protein conformational heterogeneity as a binding catalyst: ESI-MS study of hemoglobin H formation. Biochemistry 46, 2020–2026 (2007)

    Article  CAS  Google Scholar 

  32. Boys, B.L., Kuprowski, M.C., Konermann, L.: Symmetric behavior of hemoglobin α- and β-subunits during acid-induced denaturation observed by electrospray mass spectrometry. Biochemistry 46, 10675–10684 (2007)

    Article  CAS  Google Scholar 

  33. Apostol, I.: Assessing the relative stabilities of engineered hemoglobins using electrospray mass spectrometry. Anal. Biochem. 272, 8–18 (1999)

    Article  CAS  Google Scholar 

  34. Ferguson, C.N., Benchaar, S.A., Miao, Z.X., Loo, J.A., Chen, H.: Direct ionization of large proteins and protein complexes by desorption electrospray ionization-mass spectrometry. Anal. Chem. 83, 6468–6473 (2011)

    Article  CAS  Google Scholar 

  35. Zehl, M., Allmaier, G.: Ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact hemoglobin complex from whole human blood. Rapid Commun. Mass Spectrom. 18, 1932–1938 (2004)

    Article  CAS  Google Scholar 

  36. Iacob, R.E., Engen, J.R.: Hydrogen exchange mass spectrometry: Are we out of the quicksand? J. Am. Soc. Mass Spectrom. 23, 1003–1010 (2012)

    Article  CAS  Google Scholar 

  37. Percy, A.J., Rey, M., Burns, K.M., Schriemer, D.C.: Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry—a review. Anal. Chim. Acta 721, 7–21 (2012)

    Article  CAS  Google Scholar 

  38. Englander, S.W.: Hydrogen exchange and mass spectrometry: A historical perspective. J. Am. Soc. Mass Spectrom. 17, 1481–1489 (2006)

    Article  CAS  Google Scholar 

  39. Englander, J.J., Del Mar, C., Li, W., Englander, S.W., Kim, J.S., Stranz, D.D., Hamuro, Y., Woods, V.L.: Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 100, 7057–7062 (2003)

    Article  CAS  Google Scholar 

  40. Bunn, H.F., Forget, B.G.: Hemoglobin: Molecular, Genetic, and Clinical Aspects. W.B. Saunders Company, Philadelphia (1986)

    Google Scholar 

  41. Perutz, M.F.: Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–739 (1970)

    Article  CAS  Google Scholar 

  42. Smith, F.R., Simmons, K.C.: Cyanomet human hemoglobin crystallized under physiological conditions exhibits the Y-Quaternary Structure. Proteins 18, 295–300 (1994)

    Article  CAS  Google Scholar 

  43. Silva, M.M., Rogers, P.H., Arnone, A.: A third quaternary structure of human hemoglobin-A at 1.7A resolution. J. Biol. Chem. 267, 17248–17256 (1992)

    CAS  Google Scholar 

  44. Perutz, M.F., Fersht, A.R., Simon, S.R., Roberts, G.C.K.: Influence of globin structure on the state of the heme. II. Allosteric transitions in methemoglobin. Biochemistry 13, 2174–2186 (1974)

    Article  CAS  Google Scholar 

  45. Mitra, G., Muralidharan, M., Narayanan, S., Pinto, J., Srinivasan, K., Mandal, A.K.: Glutathionylation Induced structural changes in oxy human hemoglobin analyzed by backbone amide hydrogen/deuterium exchange and MALDI mass spectrometry. Bioconjug. Chem. 23, 2344–2353 (2012)

    Article  CAS  Google Scholar 

  46. Abaturov, L.V., Nosova, N.G., Shlyapnicov, S.V., Faizullin, D.A.: The conformational dynamic of the tetramer hemoglobin molecule as revealed by hydrogen exchange. I. Influence of pH, temperature and ligand binding. Mol. Biol. 40, 326–340 (2006)

    CAS  Google Scholar 

  47. Weis, D.D., Engen, J.R., Kass, I.J.: Semi-automated data processing of hydrogen exchange mass spectra using HX-express. J. Am. Soc. Mass Spectrom. 17, 1700–1703 (2006)

    Article  CAS  Google Scholar 

  48. Liu, J., Konermann, L.: Protein–Protein binding affinities in solution determined by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 408–417 (2011)

    Article  CAS  Google Scholar 

  49. Mayne, L., Kan, Z.-Y., Chetty, P.S., Ricciuti, A., Walters, B.T., Englander, S.W.: Many overlapping peptides for protein hydrogen exchange experiments by the fragment separation-mass spectrometry method. J. Am. Soc. Mass Spectrom. 22, 1898–1905 (2011)

    Article  CAS  Google Scholar 

  50. Wang, L., Smith, D.L.: Downsizing improves sensitivity 100-fold for hydrogen exchange-mass spectrometry. Anal. Biochem. 314, 46–53 (2003)

    Article  CAS  Google Scholar 

  51. Milne, J.S., Mayne, L., Roder, H., Wand, A.J., Englander, S.W.: Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 7, 739–745 (1998)

    Article  CAS  Google Scholar 

  52. Andersen, C.B.F., Torvund-Jensen, M., Nielsen, M.J., de Oliveira, C.L.P., Hersleth, H.P., Andersen, N.H., Pedersen, J.S., Andersen, G.R., Moestrup, S.K.: Structure of the haptoglobin-haemoglobin complex. Nature 489, 456–459 (2012)

    Article  CAS  Google Scholar 

  53. Bamm, V.V., Tsemakhovich, V.A., Shaklai, M., Shaklai, N.: Haptoglobin Phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL. Biochemistry 43, 3899–3906 (2004)

    Article  CAS  Google Scholar 

  54. Ruotolo, B.T., Robinson, C.V.: Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 10, 402–408 (2006)

    Article  CAS  Google Scholar 

  55. Hamdy, O.M., Julian, R.R.: Reflections on charge state distributions, protein structure, and the mystical mechanism of electrospray ionization. J. Am. Soc. Mass Spectrom. 23, 1–6 (2012)

    Article  CAS  Google Scholar 

  56. Breuker, K., McLafferty, F.W.: Stepwise evolution of protein native structure with electrospray into the gas phase, 10–12 to 102 s. Proc. Natl. Acad. Sci. U. S. A. 105, 18145–18152 (2008)

    Article  CAS  Google Scholar 

  57. Deng, L., Broom, A., Kitova, E.N., Richards, M.R., Zheng, R.B., Shoemaker, G.K., Meiering, E.M., Klassen, J.S.: Kinetic stability of the streptavidin-biotin interaction enhanced in the gas phase. J. Am. Chem. Soc. 134, 16586–16596 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canada Research Chairs Program. They thank Dr. Jiangjiang Liu for her help during preparation of the protein samples that were used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Konermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowole, M.A., Konermann, L. Comparative Analysis of Oxy-Hemoglobin and Aquomet-Hemoglobin by Hydrogen/Deuterium Exchange Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 997–1005 (2013). https://doi.org/10.1007/s13361-013-0647-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0647-4

Key words

Navigation