Skip to main content
Log in

Characterization of an Electron Ionization Source Trap Operating in the Presence of a Magnetic Field Through Computer Simulation

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

We explore the feasibility of conducting electron ionization (EI) in a radio-frequency (rf) ion source trap for mass spectrometry applications. Electrons are radially injected into a compact linear ion trap in the presence of a magnetic field used essentially to lengthen the path of the electrons in the trap. The device can either be used as a stand-alone mass spectrometer or can be coupled to a mass analyzer. The applied parallel magnetic field and the oscillating rf electric field produced by the trap give rise to a set of coupled Mathieu equations of motion. Via numerical simulations, electron trajectories are studied under varying intensities of the magnetic field in order to determine the conditions that enhance ion production. Likewise, the dynamic behavior of the ions are investigated in the proposed EI source trap and the fast Fourier transform FFT formalism is used to obtain the frequency spectrum from the numerical simulations to study the motional frequencies of the ions which include combinations of the low-frequency secular and the high-frequency micromotion with magnetron and cyclotron frequencies. The dependence of these motional frequencies on the trapping conditions is examined and particularly, the limits of applying a radial magnetic field to the EI ion trap are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dempster, A.J.: The properties of slow canal rays. Phys. Rev. 8(6), 651–662 (1916). doi:10.1103/PhysRev.8.651

    Google Scholar 

  2. Nier, A.O.: A mass spectrometer for routine isotope abundance measurements. Rev. Sci. Instrum. 11(7), 212–216 (1940)

    Article  CAS  Google Scholar 

  3. Yue, B., Lee, E.D., Rockwood, A.L., Lee, M.L.: Superimposition of a magnetic field around an ion guide for electron ionization time-of-flight mass spectrometry. Anal. Chem. 77(13), 4167–4175 (2005)

    Article  CAS  Google Scholar 

  4. Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76(16), 4595–4605 (2004)

    Article  CAS  Google Scholar 

  5. Mino, W.K., Spencer, M., Wylde, J., Rafferty D.: “Application of tandem mass spectrometry in a miniature ion trap ms: Measuring btex,” Proceedings of the 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vancouver, Canada, May 2012

  6. SIMION3D. http://simion.com. Accessed 1 Jan 2008

  7. Campbell, S., Chancelier, J.-P., Nikoukhah, R.: Modeling and simulation in SCILAB. In: Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4, pp. 73–106. Springer, New York (2010)

    Chapter  Google Scholar 

  8. Gao, L., Song, Q., Patterson, G.E., Cooks, R.G., Ouyang, Z.: Handheld rectilinear ion trap mass spectrometer. Anal. Chem. 78(17), 5994–6002 (2006)

    Article  CAS  Google Scholar 

  9. Fischer, E.: Die dreidimensionale stabilisierung von ladungstrgern in einem vierpolfeld. Z. Phys. 156, 1–26 (1959)

    Article  Google Scholar 

  10. Li, G.-Z., Werth, G.: The combined trap and some possible applications. Phys. Scr. 46(6), 587–592 (1992)

    Article  CAS  Google Scholar 

  11. Bate, D., Dholakia, K., Thompson, R., Wilson, D.: Ion oscillation frequencies in a combined trap. J. Mod. Opt. 39(2), 305–316 (1992)

    Article  CAS  Google Scholar 

  12. Huang, Y., Li, G.-Z., Guan, S., Marshall, A.G.: A combined linear ion trap for mass spectrometry. J. Am. Soc. Mass Spectrom. 8(9), 962–969 (1997)

    Article  CAS  Google Scholar 

  13. Nakamura, T., Ohtani, S., Wada, M., Okada, K., Katayama, I., Schuessler, H.A.: Ion dynamics and oscillation frequencies in a linear combined trap. J. Appl. Phys. 89(5), 2922–2931 (2001)

    Article  CAS  Google Scholar 

  14. Rempel, D., Gross, M.: High pressure trapping in Fourier transform mass spectrometry: A radiofrequency-only-mode event. J. Am. Soc. Mass Spectrom. 3(5), 590–594 (1992)

    Article  CAS  Google Scholar 

  15. Chun-Sing, O., Schuessler, H.A.: Confinement of ions created externally in a quadrupole ion trap operated in the combined penning and radio-frequency mode. J. Appl. Phys. 52(4), 2601–2607 (1981)

    Article  Google Scholar 

  16. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    Article  CAS  Google Scholar 

  17. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York, pp 190–191 (1999)

  18. Dahl, D.A.: SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200(13), 3–25 (2000)

    CAS  Google Scholar 

  19. D. Manura. http://simion.com/info/collision_model_hs1.html Accessed 13 Apr 1959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Vitcher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitcher, S., Charvy, C., Dudragne, L. et al. Characterization of an Electron Ionization Source Trap Operating in the Presence of a Magnetic Field Through Computer Simulation. J. Am. Soc. Mass Spectrom. 24, 1130–1136 (2013). https://doi.org/10.1007/s13361-013-0641-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0641-x

Key words

Navigation