Skip to main content
Log in

Minimization of Fragmentation and Aggregation by Laser Desorption Laser Ionization Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Measuring average quantities in complex mixtures can be challenging for mass spectrometry, as it requires ionization and detection with nearly equivalent cross-section for all components, minimal matrix effect, and suppressed signal from fragments and aggregates. Fragments and aggregates are particularly troublesome for complex mixtures, where they can be incorrectly assigned as parent ions. Here we study fragmentation and aggregation in six aromatic model compounds as well as petroleum asphaltenes (a naturally occurring complex mixture) using two laser-based ionization techniques: surface assisted laser desorption ionization (SALDI), in which a single laser desorbs and ionizes solid analytes; and laser ionization laser desorption mass spectrometry (L2MS), in which desorption and ionization are separated spatially and temporally with independent lasers. Model compounds studied include molecules commonly used as matrices in single laser ionization techniques such as matrix assisted laser desorption ionization (MALDI). We find significant fragmentation and aggregation in SALDI, such that individual fragment and aggregate peaks are typically more intense than the parent peak. These fragment and aggregate peaks are expected in MALDI experiments employing these compounds as matrices. On the other hand, we observe no aggregation and only minimal fragmentation in L2MS. These results highlight some advantages of L2MS for analysis of complex mixtures such as asphaltenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fernandez-Lima, F.A., Becker, C., McKenna, A.M., Rodgers, R.P., Marshall, A.G., Russell, D.H.: Petroleum crude oil characterization by IMS-MS and FTICR MS. Anal. Chem. 81, 9941–9947 (2009)

    Article  CAS  Google Scholar 

  2. Baidoo, E.E.K., Benket, P.I., Neususs, C., Pelzing, M., Kruppa, G., Leary, J.A., Keasling, J.D.: Capillary electrophoresis-Fourier transform ion cyclotron resonance mass spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method. Anal. Chem. 80, 3112–3122 (2008)

    Article  CAS  Google Scholar 

  3. Armirotti, A.: Bottom-up proteomics. Curr. Anal. Chem. 5, 116–130 (2009)

    Article  CAS  Google Scholar 

  4. Durbin, K.R., Tran, J.C., Zamdborg, L., Sweet, S.M.M., Catherman, A.D., Lee, J.E., Li, M.X., Kellie, J.F., Kelleher, N.L.: Intact mass detection, interpretation, and visualization to automate top-down proteomics on a large scale. Proteomics 10, 3589–3597 (2010)

    Article  CAS  Google Scholar 

  5. Rodgers, R.P., McKenna, A.M.: Petroleum analysis. Anal. Chem. 83, 4665–4687 (2011)

    Article  CAS  Google Scholar 

  6. Marshall, A.G., Rodgers, R.P.: Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. U. S. A. 105, 18090–18095 (2008)

    Article  CAS  Google Scholar 

  7. Sabbah, H., Morrow, A.L., Pomerantz, A.E., Zare, R.N.: Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuel 25, 1597–1604 (2011)

    Article  CAS  Google Scholar 

  8. Pomerantz, A.E., Hammond, M.R., Morrow, A.L., Mullins, O.C., Zare, R.N.: Asphaltene molecular-mass distribution determined by two-step laser mass spectrometry. Energy Fuel 23, 1162–1168 (2009)

    Article  CAS  Google Scholar 

  9. Hortal, A.R., Hurtado, P., Martinez-Haya, B., Mullins, O.C.: Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments. Energy Fuel 21, 2863–2868 (2007)

    Article  CAS  Google Scholar 

  10. Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W., Davis, A.: Concerning the application of FT-IR to the study of coal—a critical-assessment of band assignments and the application of spectral-analysis programs. Appl. Spectrosc. 35, 475–485 (1981)

    Article  CAS  Google Scholar 

  11. George, G.N., Gorbaty, M.L.: Sulfur K-edge X-ray absorption-spectroscopy of petroleum asphaltenes and model compounds. J. Am. Chem. Soc. 111, 3182–3186 (1989)

    Article  CAS  Google Scholar 

  12. Mitrakirtley, S., Mullins, O.C., Vanelp, J., George, S.J., Chen, J., Cramer, S.P.: Determination of the nitrogen chemical structures in petroleum asphaltenes using xanes spectroscopy. J. Am. Chem. Soc. 115, 252–258 (1993)

    Article  CAS  Google Scholar 

  13. Kelemen, S.R., Afeworki, M., Gorbaty, M.L., Sansone, M., Kwiatek, P.J., Walters, C.C., Freund, H., Siskin, M., Bence, A.E., Curry, D.J., Solum, M., Pugmire, R.J., Vandenbroucke, M., Leblond, M., Behar, F.: Direct characterization of kerogen by X-ray and solid-state C-13 nuclear magnetic resonance methods. Energy Fuel 21, 1548–1561 (2007)

    Article  CAS  Google Scholar 

  14. Andrews, A.B., Edwards, J.C., Pomerantz, A.E., Mullins, O.C., Nordlund, D., Norinaga, K.: Comparison of coal-derived and petroleum asphaltenes by C-13 nuclear magnetic resonance, DEPT, and XRS. Energy Fuel 25, 3068–3076 (2011)

    Article  CAS  Google Scholar 

  15. Solum, M.S., Pugmire, R.J., Grant, D.M.: C-13 solid-state NMR of argonne premium coals. Energy Fuel 3, 187–193 (1989)

    Article  CAS  Google Scholar 

  16. Hortal, A.R., Martinez-Haya, B., Lobato, M.D., Pedrosa, J.M., Lago, S.: On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments. J. Mass Spectrom. 41, 960–968 (2006)

    Article  CAS  Google Scholar 

  17. Strausz, O.P., Peng, P., Murgich, J.: About the colloidal nature of asphaltenes and the MW of covalent monomeric units. Energy Fuel 16, 809–822 (2002)

    Article  CAS  Google Scholar 

  18. Domin, M., Li, S., Lazaro, M.J., Herod, A.A., Larsen, J.W., Kandiyoti, R.: Large molecular mass materials in coal-derived liquids by Cf-252-plasma and matrix-assisted laser desorption mass spectrometry. Energy Fuel 12, 485–492 (1998)

    Article  CAS  Google Scholar 

  19. Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299–2301 (1988)

    Article  CAS  Google Scholar 

  20. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)

    Article  CAS  Google Scholar 

  21. Knochenmuss, R., Zenobi, R.: MALDI ionization: The role of in-plume processes. Chem. Rev. 103, 441–452 (2003)

    Article  CAS  Google Scholar 

  22. Pan, C., Xu, S., Zhou, H., Fu, Y., Ye, M., Zou, H.: Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 387, 193–204 (2007)

    Article  CAS  Google Scholar 

  23. Wei, J., Buriak, J.M., Siuzdak, G.: Desorption-ionization mass spectrometry on porous silicon. Nature 399, 243–246 (1999)

    Article  CAS  Google Scholar 

  24. Ha, T.K., Lee, T.G., Song, N.W., Moon, D.W., Han, S.Y.: Cation-assisted laser desorption/ionization for matrix-free surface mass spectrometry of alkanethiolate self-assembled monolayers on gold substrates and nanoparticles. Anal. Chem. 80, 8526–8531 (2008)

    Article  CAS  Google Scholar 

  25. Guenin, E., Lecouvey, M., Hardouin, J.: Could a nano-assisted laser desorption/ionization target improve the study of small organic molecules by laser desorption/ionization time-of-flight mass spectrometry? Rapid Commun. Mass Spectrom. 23, 1395–1400 (2009)

    Article  CAS  Google Scholar 

  26. Kailasa, S.K., Wu, H.-F.: Multifunctional ZrO2 nanoparticles and ZrO2-SiO2 nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Anal. Bioanal. Chem. 396, 1115–1125 (2010)

    Article  CAS  Google Scholar 

  27. Shen, Z.X., Thomas, J.J., Averbuj, C., Broo, K.M., Engelhard, M., Crowell, J.E., Finn, M.G., Siuzdak, G.: Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 73, 612–619 (2001)

    Article  CAS  Google Scholar 

  28. Dattelbaum, A.M., Iyer, S.: Surface-assisted laser desorption/ionization mass spectrometry. Expert Rev. Proteome. 3, 153–161 (2006)

    Article  CAS  Google Scholar 

  29. Najam-ul-Haq, M., Rainer, M., Szabo, Z., Vallant, R., Huck, C.W., Bonn, G.K.: Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry. J. Biochem. Biophys. Methods 70, 319–328 (2007)

    Article  CAS  Google Scholar 

  30. Tang, H.-W., Ng, K.-M., Lu, W., Che, C.-M.: Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: Desorption mechanism(s) and the design of SALDI substrates. Anal. Chem. 81, 4720–4729 (2009)

    Article  CAS  Google Scholar 

  31. Zhang, H., Cha, S., Yeung, E.S.: Colloidal graphite-assisted laser desorption/ionization MS and MSn of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal. Chem. 79, 6575–6584 (2007)

    Article  CAS  Google Scholar 

  32. Lewis, W.G., Shen, Z.X., Finn, M.G., Siuzdak, G.: Desorption/ionization on silicon (DIOS) mass spectrometry: Background and applications. Int. J. Mass Spectrom. 226, 107–116 (2003)

    Article  CAS  Google Scholar 

  33. Northen, T.R., Woo, H.-K., Northen, M.T., Nordstroem, A., Uritboonthail, W., Turner, K.L., Siuzdak, G.: High surface area of porous silicon drives desorption of intact molecules. J. Am. Soc. Mass Spectrom. 18, 1945–1949 (2007)

    Article  CAS  Google Scholar 

  34. Law, K.P., Larkin, J.R.: Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 399, 2597–2622 (2011)

    Article  CAS  Google Scholar 

  35. Kruse, R.A., Li, X.L., Bohn, P.W., Sweedler, J.V.: Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. Anal. Chem. 73, 3639–3645 (2001)

    Article  CAS  Google Scholar 

  36. Piret, G., Coffinier, Y., Roux, C., Melnyk, O., Boukherroub, R.: Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces. Langmuir 24, 1670–1672 (2008)

    Article  CAS  Google Scholar 

  37. Yan, B., Zhu, Z.-J., Miranda, O.R., Chompoosor, A., Rotello, V.M., Vachet, R.W.: Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Anal. Bioanal. Chem. 396, 1025–1035 (2010)

    Article  CAS  Google Scholar 

  38. Lim, A.Y., Ma, J., Boey, Y.C.F.: Development of nanomaterials for SALDI-MS analysis in forensics. Adv. Mater. 24, 4211–4216 (2012)

    Article  CAS  Google Scholar 

  39. Pomerantz, A.E., Hammond, M.R., Morrow, A.L., Mullins, O.C., Zare, R.N.: Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 130, 7216–7217 (2008)

    Article  CAS  Google Scholar 

  40. Zare, R.N., Hahn, J.H., Zenobi, R.: Mass-spectrometry of molecular adsorbates using desorption laser multiphoton ionization. Bull. Chem. Soc. Jpn. 61, 87–92 (1988)

    Article  CAS  Google Scholar 

  41. Engelke, F., Hahn, J.H., Henke, W., Zare, R.N.: Determination of phenylthiohydantoin-amino acids by 2-step laser desorption multiphoton ionization. Anal. Chem. 59, 909–912 (1987)

    Article  CAS  Google Scholar 

  42. Kovalenko, L.J., Maechling, C.R., Clemett, S.J., Philippoz, J.M., Zare, R.N., Alexander, C.M.O.: Microscopic organic-analysis using 2-step laser mass-spectrometry—application to meteoritic acid residues. Anal. Chem. 64, 682–690 (1992)

    Article  CAS  Google Scholar 

  43. Hanley, L., Zimmermann, R.: Light and molecular ions: The emergence of vacuum UV single-photon ionization in MS. Anal. Chem. 81, 4174–4182 (2009)

    Article  CAS  Google Scholar 

  44. Mahajan, T.B., Plows, F.L., Gillette, J.S., Zare, R.N., Logan, G.A.: Comparison of microprobe two-step laser desorption/laser ionization mass spectrometry and gas chromatography/mass spectrometry studies of polycyclic aromatic hydrocarbons in ancient terrestrial rocks. J. Am. Soc. Mass Spectrom. 12, 989–1001 (2001)

    Article  CAS  Google Scholar 

  45. Fye, J.L., Nelson, H.H., Mowery, R.L., Baronavski, A.P., Callahan, J.H.: Scanning ultraviolet two-step laser mass spectroscopy of polycyclic aromatic hydrocarbon distributions on creosote-contaminated soil particles. Anal. Chem. 74, 3019–3029 (2002)

    Article  CAS  Google Scholar 

  46. Gillette, J.S., Luthy, R.G., Clemett, S.J., Zare, R.N.: Direct observation of polycyclic aromatic hydrocarbons on geosorbents at the subparticle scale. Environ. Sci. Technol. 33, 1185–1192 (1999)

    Article  CAS  Google Scholar 

  47. Plows, F.L., Elsila, J.E., Zare, R.N., Buseck, P.R.: Evidence that polycyclic aromatic hydrocarbons in two carbonaceous chondrites predate parent-body formation. Geochim. Cosmochim. Acta 67, 1429–1436 (2003)

    Article  CAS  Google Scholar 

  48. Spencer, M.K., Hammond, M.R., Zare, R.N.: Laser mass spectrometric detection of extraterrestrial aromatic molecules: Mini-review and examination of pulsed heating effects. Proc. Natl. Acad. Sci. U. S. A. 105, 18096–18101 (2008)

    Article  CAS  Google Scholar 

  49. Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D., Walker, R.M.: Identification of complex aromatic-molecules in individual interplanetary dust particles. Science 262, 721–725 (1993)

    Article  CAS  Google Scholar 

  50. Greenberg, J.M., Gillette, J.S., Caro, G.M.M., Mahajan, T.B., Zare, R.N., Li, A.G., Schutte, W.A., de Groot, M., Mendoza-Gomez, C.: Ultraviolet photoprocessing of interstellar dust mantles as a source of polycyclic aromatic hydrocarbons and other conjugated molecules. Astrophys. J. 531, L71–L73 (2000)

    Article  CAS  Google Scholar 

  51. Spencer, M.K., Clemett, S.J., Sandford, S.A., McKay, D.S., Zare, R.N.: Organic compound alteration during hypervelocity collection of carbonaceous materials in aerogel. Meteorit. Planet. Sci. 44, 15–24 (2009)

    Article  CAS  Google Scholar 

  52. Haefliger, O.P., Bucheli, T.D., Zenobi, R.: Development of aromatic compounds of urban aerosols in the course of a 24-hour period—a study using two-step laser mass spectrometry. Analusis 27, 337–340 (1999)

    Article  CAS  Google Scholar 

  53. Orea, J.M., Montero, C., Jimenez, J.B., Urena, A.G.: Analysis of trans-resveratrol by laser desorption coupled with resonant ionization spectrometry. Application to trans-resveratrol content in vine leaves and grape skin. Anal. Chem. 73, 5921–5929 (2001)

    Article  CAS  Google Scholar 

  54. Zhan, Q., Zenobi, R., Wright, S.J., LangridgeSmith, P.R.R.: Spatially resolved in-situ analysis of polymer additives by two-step laser mass spectrometry. Macromolecules 29, 7865–7871 (1996)

    Article  CAS  Google Scholar 

  55. Sabbah, H., Morrow, A.L., Pomerantz, A.E., Mullins, O.C., Tan, X., Gray, M.R., Azyat, K., Tykwinski, R.R., Zare, R.N.: Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds. Energy Fuel 24, 3589–3594 (2010)

    Article  CAS  Google Scholar 

  56. Sabbah, H., Pomerantz, A.E., Wagner, M., Muellen, K., Zare, R.N.: Laser desorption single-photon ionization of asphaltenes: Mass range, compound sensitivity, and matrix effects. Energy Fuel 26, 3521–3526 (2012)

    Article  CAS  Google Scholar 

  57. Bucheli, T.D., Haefliger, O.P., Dietiker, R., Zenobi, R.: Analysis of water contaminants and natural water samples using two-step laser mass spectrometry. Anal. Chem. 72, 3671–3677 (2000)

    Article  CAS  Google Scholar 

  58. Sabbah, H., Morrow, A.L., Jenniskens, P., Shaddad, M.H., Zare, R.N.: Polycyclic aromatic hydrocarbons in asteroid 2008 TC3: Dispersion of organic compounds inside asteroids. Meteorit. Planet. Sci. 45, 1710–1717 (2010)

    Article  CAS  Google Scholar 

  59. Hahn, J.H., Zenobi, R., Zare, R.N.: Subfemtomole quantitation of molecular adsorbates by 2-step laser mass-spectrometry. J. Am. Chem. Soc. 109, 2842–2843 (1987)

    Article  CAS  Google Scholar 

  60. Elsila, J.E., de Leon, N.P., Zare, R.N.: Factors affecting quantitative analysis in laser desorption/laser ionization mass spectrometry. Anal. Chem. 76, 2430–2437 (2004)

    Article  CAS  Google Scholar 

  61. Acevedo, S., Gutierrez, L., Negrin, G., Pereira, J.C., Mendez, B., Delolme, F., Dessalces, G., Broseta, D.: Molecular weight of petroleum asphaltenes: A comparison between mass spectrometry and vapor pressure osmometry. Energy Fuel 19, 1548–1560 (2005)

    Article  CAS  Google Scholar 

  62. Tanaka, R., Sato, S., Takanohashi, T., Hunt, J.E., Winans, R.E.: Analysis of the molecular weight distribution of petroleum asphaltenes using laser desorption-mass spectrometry. Energy Fuel 18, 1405–1413 (2004)

    Article  CAS  Google Scholar 

  63. Al-Muhareb, E., Morgan, T.J., Herod, A.A., Kandiyoti, R.: Characterization of petroleum asphaltenes by size exclusion chromatography, UV-fluorescence and mass spectrometry. Pet. Sci. Technol. 25, 81–91 (2007)

    Article  CAS  Google Scholar 

  64. Mullins, O.C., Sabbah, H., Eyssautier, J., Pomerantz, A.E., Barre, L., Andrews, A.B., Ruiz-Morales, Y., Mostowfi, F., McFarlane, R., Goual, L., Lepkowicz, R., Cooper, T., Orbulescu, J., Leblanc, R.M., Edwards, J., Zare, R.N.: Advances in asphaltene science and the Yen–Mullins model. Energy Fuel 26, 3986–4003 (2012)

    Article  CAS  Google Scholar 

  65. Mullins, O.C.: The modified Yen model. Energy Fuel 24, 2179–2207 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to John Whitin, School of Medicine, Stanford University, for assistance in SALDI. They thank Hassan Sabbah, Université de Toulouse, for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Zare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Pomerantz, A.E., Mullins, O.C. et al. Minimization of Fragmentation and Aggregation by Laser Desorption Laser Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1116–1122 (2013). https://doi.org/10.1007/s13361-013-0636-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0636-7

Key words

Navigation