Skip to main content

Estimation of Activation Energy from the Survival Yields: Fragmentation Study of Leucine Enkephalin and Polyethers by Tandem Mass Spectrometry


A simple collision model for multiple collisions occurring in quadrupole type mass spectrometers was derived and tested with leucine enkaphalin a common mass spectrometric standard with well-characterized properties. Implementation of the collision model and Rice-Ramsperger-Kassel-Marcus (RRKM) algorithm into a spreadsheet software allowed a good fitting of the calculated data to the experimental survival yield (SY) versus collision energy curve. In addition, fitting also ensured to estimate the efficiencies of the kinetic to internal energy conversion for Leucine enkephalin in quadrupole-time-of-flight and triple quadrupole instruments. It was observed that the experimental SY versus collision energy curves for the leucine enkephalin can be described by the Rice-Ramsperger-Kassel (RRK) formalism by reducing the total degrees of freedom (DOF) to about one-fifth. Furthermore, this collision model with the RRK formalism was used to estimate the critical energy (E o ) of lithiated polyethers, including polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetrahydrofurane (PTHF) with degrees of freedom similar to that of leucine enkephalin. Applying polyethers with similar DOF provided the elimination of the effect of DOF on the unimolecular reaction rate constant. The estimated value of E o for PEG showed a relatively good agreement with the value calculated by high-level quantum chemical calculations reported in the literature. Interestingly, it was also found that the E o values for the studied polyethers were similar.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Armentrout, P.B.: Threshold collision-induced dissociations for the determination of accurate gas-phase binding energies and reaction barriers. In: Schalley, C. (ed.) Modern Mass Spectrometry, C, p. 233. Springer-Verlag, Berlin (2003)

    Chapter  Google Scholar 

  2. Vékey, K.: Internal energy effects in mass spectrometry. J. Mass Spectrom. 31, 445–463 (1996)

    Article  Google Scholar 

  3. Gabelica, V., De Pauw, E.: Internal energy and fragmentations of ions produced in electrospray sources. Mass Spectrom. Rev. 24, 566–587 (2005)

    Article  CAS  Google Scholar 

  4. Mauk, M.R., Mauk, A.G., Chen, Y.-L., Douglas, D.J.: Tandem mass spectrometry of protein–protein complexes: Cytochrome c–cytochrome b5. J. Am. Soc. Mass Spectrom. 13, 59–71 (2002)

    Article  CAS  Google Scholar 

  5. Chen, Y.-L., Collings, B.A., Douglas, D.J.: Collision cross sections of myoglobin and cytochrome c ions with Ne, Ar, and Kr. J. Am. Soc. Mass Spectrom. 8, 681–687 (1997)

    Article  CAS  Google Scholar 

  6. Douglas, D.J.: Applications of collision dynamics in quadrupole mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 101–113 (1998)

    Article  CAS  Google Scholar 

  7. Nesatyy, V.J., Laskin, J.: Dissociation of noncovalent protein complexes by triple quadrupole tandem mass spectrometry: Comparison of Monte Carlo simulation and experiment. Int. J. Mass Spectrom. 221, 245–262 (2002)

    Article  CAS  Google Scholar 

  8. Drahos, L., Vékey, K.: Mass Kinetics: A theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions. J. Mass Spectrom. 36, 237–263 (2001)

    Article  CAS  Google Scholar 

  9. Sztáray, J., Memboeuf, A., Drahos, L., Vékey, K.: Leucine enkephalin—a mass spectrometry standard. Mass Spectrom. Rev. 30, 298–320 (2011)

    Article  Google Scholar 

  10. Abuchowski, A., McCoy, J.R., Palczuk, N.C., van Es, T., Davis, F.F.: Effect of covalent attachment of polyethylene-glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977)

    CAS  Google Scholar 

  11. Adams, M.L., Lavasanifar, A., Kwon, G.S.: Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92, 1343–1355 (2003)

    Article  CAS  Google Scholar 

  12. Solis-Correa, R.E., Vargas-Coronado, R., Aguilar-Vega, M., Cauich-Rodriguez, J.V., San Roman, J., Marcos, A.: Synthesis of HMDI-based segmented polyurethanes and their use in the manufacture of elastomeric composites for cardiovascular applications. J. Biomater. Sci. Polym. Ed. 18, 561–578 (2007)

    Article  CAS  Google Scholar 

  13. Chen, J.H., Wei, J., Chang, C.Y., Laiw, R.F., Lee, Y.D.: Studies on segmented polyetherurethane for biomedical application: Effects of composition and hard-segment content on biocompatibility. J. Biomed. Mater. Res. 18, 939–951 (1984)

    Article  Google Scholar 

  14. Martin, D.J., Poole-Warren, L.A., Gunatillake, P.A., McCarthy, S.J., Meijs, G.F., Schindhelm, K.: Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: Biostability. Biomaterials 21, 1021–1029 (2000)

    Article  CAS  Google Scholar 

  15. Muntean, F., Armentrout, P.B.: Guided ion beam study of collision-induced dissociation dynamics: Integral and differential cross sections. J. Chem. Phys. 115, 1213–1228 (2001)

    Article  CAS  Google Scholar 

  16. Lock, C.M., Dyer, E.W.: Simulation of ion trajectories through a high pressure radio frequency only quadrupole collision cell by SIMION 6.0. Rapid Commun. Mass Spectrom. 13, 422–431 (1999)

    Article  CAS  Google Scholar 

  17. Baer, T., Mayerfn, P.M.: Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory calculations in mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 103–115 (1997)

    Article  CAS  Google Scholar 

  18. Drahos, L., Vékey, K.: Determination of the thermal energy and its distribution in peptides. J. Am. Soc. Mass Spectrom. 10, 323–328 (1999)

    Article  CAS  Google Scholar 

  19. Memboeuf, A., Drahos, L., Vékey, K., Lendvay, G.: Energetics of fragmentation for cationized poly(ethylene glycol) oligomers. Rapid Commun. Mass Spectrom. 24, 2471–2473 (2010)

    Article  CAS  Google Scholar 

  20. Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: Poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122, 4692–4699 (2000)

    Article  CAS  Google Scholar 

Download references


The authors acknowledge financial support for this work by the grants K-101850 given by OTKA (National Fund for Scientific Research Development, Hungary), and the grants TAMOP 4.2.1./B-09/1/KONV-2010-0007, TAMOP-4.2.2./B-10/1-2010-0024, and TÁMOP-4.2.2.A-11/1/KONV-2012-0036 by the European Union.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sándor Kéki.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 1810 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuki, Á., Shemirani, G., Nagy, L. et al. Estimation of Activation Energy from the Survival Yields: Fragmentation Study of Leucine Enkephalin and Polyethers by Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1064–1071 (2013).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Multiple collisions
  • Tandem mass spectrometry
  • Collision-induced dissociation
  • RRK and RRKM model
  • Leucine enkephalin
  • Polyethers