Skip to main content
Log in

Electron Transfer Dissociation of Photolabeled Peptides. Backbone Cleavages Compete with Diazirine Ring Rearrangements

  • Focus: Electron Transfer Dissociation: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Gas-phase conformations and electron transfer dissociations of pentapeptide ions containing the photo-Leu residue (L*) were studied. Exhaustive conformational search including molecular dynamics force-field, semi-empirical, ab initio, and density functional theory calculations established that the photo-Leu residue did not alter the gas-phase conformations of (GL*GGK  +  2H)2+ and (GL*GGK-NH2 + H)+ ions, which showed the same conformer energy ranking as the unmodified Leu-containing ions. This finding is significant in that it simplifies conformational analysis of photo-labeled peptide ions. Electron transfer dissociation mass spectra of (GL*GGK  +  2H)2+, (GL*GGK-NH2 + 2H)2+,(GL*GGKK + 2H)2+, (GL*GLK + 2H)2+, and (GL*LGK + 2H)2+ showed 16 %–21 % fragment ions originating by radical rearrangements and cleavages in the diazirine ring. These side-chain dissociations resulted in eliminations of N2H3, N2H4, [N2H5], and [NH4O] neutral fragments and were particularly abundant in long-lived charge-reduced cation-radicals. Deuterium labeling established that the neutral hydrazine molecules mainly contained two exchangeable and two nonexchangeable hydrogen atoms from the peptide and underwent further H/D exchange in an ion–molecule complex. Electron structure calculations on the charge-reduced ions indicated that the unpaired electron was delocalized between the diazirine and amide π* electronic systems in the low electronic states of the cation-radicals. The diazirine moiety in GL*GGK-NH2was calculated to have an intrinsic electron affinity of 1.5 eV, which was further increased by the Coulomb effect of the peptide positive charge. Mechanisms are proposed for the unusual elimination of hydrazine from the photo-labeled peptide ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Li, X., Cournoyer, J.J., Lin, C., O’Connor, P.B.: The effect of fixed charge modifications on electron capture dissociation. J. Am. Soc. Mass Spectrom. 19, 1514–1526 (2008)

    Article  CAS  Google Scholar 

  2. Chamot-Rooke, J., van der Rest, G., Dalleu, A., Bay, S., Lemoine, J.: The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for O-glycosylated and O-phosphorylated peptides. J. Am. Soc. Mass Spectrom. 18, 1405–1413 (2007)

    Article  CAS  Google Scholar 

  3. Chung, T.W., Tureček, F.: Selecting fixed-charge groups for electron-based peptide dissociations. A computational study of pyridinium tags. Int. J. Mass Spectrom. 276, 127–135 (2008)

    Article  CAS  Google Scholar 

  4. Chung, T.W., Tureček, F.: Electron transfer to charge-tagged peptide ions. A computational analysis of electronic states. Eur. J. Mass Spectrom. 14, 367–378 (2008)

    Article  CAS  Google Scholar 

  5. Chung, T.W., Moss, C.L., Zimnicka, M., Johnson, R.S., Moritz, R.L., Tureček, F.: Electron capture and transfer of peptides tagged with tunable fixed-charge groups. Structures and dissociation energies. J. Am. Soc. Mass Spectrom. 22, 13–30 (2011)

    Article  CAS  Google Scholar 

  6. Zimnicka, M., Moss, C.L., Chung, T.W., Hui, R., Tureček, F.: Tunable charge tags for electron-based methods of peptide sequencing. design and applications. J. Am. Soc. Mass Spectrom 23, 608–620 (2012)

    Article  CAS  Google Scholar 

  7. Ross, P.L., Huang, Y.L.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004)

    Article  CAS  Google Scholar 

  8. Han, H., Pappin, D.J., Ross, P.L., McLuckey, S.A.: Electron transfer dissociation of iTRAQ labeled peptide ions. J. Proteome Res. 7, 3643–3648 (2008)

    Article  CAS  Google Scholar 

  9. Hennrich, M.L., Boersema, P.J., van den Toorn, H., Mischerikow, N., Heck, A.J.R., Mohammed, S.: Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Anal. Chem. 81, 7814–7822 (2009)

    Article  CAS  Google Scholar 

  10. Jensen, C.S., Holm, A.I.S., Zettergren, H., Overgaard, J.B., Hvelplund, P., Nielsen, S.B.: On the charge partitioning between c and z fragments formed after electron-capture induced dissociation of charge-tagged lys-lys and ala-lys dipeptide dications. J. Am. Soc. Mass Spectrom. 20, 1881–1889 (2009)

    Article  CAS  Google Scholar 

  11. Belyayev, M.A., Cournoyer, J.J., Lin, C., O’Connor, P.B.: The effect of radical trap moieties on electron capture dissociation spectra of substance P. J. Am. Soc. Mass Spectrom. 17, 1428–1436 (2006)

    Article  CAS  Google Scholar 

  12. Tureček, F.: Electron predators are hydrogen atom traps. Effects of aryl groups on N–Cα bond dissociations of peptide radicals. J. Mass Spectrom. 45, 1280–1290 (2010)

    Article  Google Scholar 

  13. Jones, J.W., Sasaki, T., Goodlett, D.R., Tureček, F.: Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals. J. Am. Soc. Mass Spectrom. 18, 432–444 (2007)

    Article  CAS  Google Scholar 

  14. Sohn, C.H., Chung, C.K., Yin, S., Ramachandran, P., Loo, J.A., Beauchamp, J.L.: Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J. Am. Chem. Soc. 131, 5444–5459 (2009)

    Article  CAS  Google Scholar 

  15. Ben Hamidane, H., Vorobyev, A., Larregola, M., Lukaszuk, A., Tourwe, D., Lavielle, S., Karoyan, P., Tsybin, Y.O.: Radical stability directs electron capture and transfer dissociation of β-amino acids in peptides. Chem. Eur. J. 16, 4612–4622 (2010)

    Article  CAS  Google Scholar 

  16. Sargaeva, N.P., Lin, C., O’Connor, P.B.: Unusual fragmentation of β-linked peptides by ExD tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 480–491 (2011)

    Article  CAS  Google Scholar 

  17. Kjeldsen, F., Zubarev, R.A.: Effects of peptide backbone amide-to-ester bond substitution on the cleavage frequency in electron capture dissociation and collision-activated dissociation. J. Am. Soc. Mass Spectrom. 22, 1441–1452 (2011)

    Article  CAS  Google Scholar 

  18. Hansen, T.A., Jung, H.R., Kjeldsen, F.: Electron transfer dissociation reveals changes in the cleavage frequencies of backbone bonds distant to amide-to-ester substitutions in polypeptides. J. Am. Soc. Mass Spectrom. 22, 1953–1957 (2011)

    Article  CAS  Google Scholar 

  19. Zimnicka, M., Chung, T.W., Moss, C.L., Tureček, F.: Perturbing peptide cation-radical electronic states by thioxoamide groups: Formation, dissociations and energetics of thioxopeptide cation-radicals. J. Phys. Chem. A 117, 1265–1280 (2013)

    Article  CAS  Google Scholar 

  20. Kumar, A.B., Anderson, J.M., Manetsch, R.: Design, synthesis, and photoactivation studies of fluorous photolabels. Org. Biomol. Chem. 9, 6284–6292 (2011)

    Article  Google Scholar 

  21. Hashimoto, M., Hatanaka, Y.: Recent progress in diazirine-based photoaffinity labeling. Eur. J. Org. Chem. 2513–2523. doi:10.1002/ejoc.200701069 (2008)

  22. Das, J.: Aliphatic diazirines as photoaffinity probes for proteins: Recent developments. Chem. Rev. 111, 4405–4417 (2011)

    Article  CAS  Google Scholar 

  23. Dubinsky, L., Bastiaan, P., Krom, B.P., Meijler, M.M.: Diazirine based photoaffinity labeling. Bioorg. Med. Chem. 20, 554–570 (2012)

    Article  CAS  Google Scholar 

  24. Liu, M.T.H.: Chemistry of Diazirines; Vol. I and II. CRC Press, Boca Raton (1987)

    Google Scholar 

  25. Korneev, S.M.: Valence Isomerization between diazo compounds and diazirines. Eur. J. Org. Chem. 6153–6175. doi:10.1002/ejoc.201100224 (2011)

  26. Barton, D.H.R., Jaszberenyi, J.C., Theodorakis, E.A., Reibenspies, J.H.: The invention of radical reactions. 30. Diazirines as carbon radical traps. Mechanistic aspects and synthetic applications of a novel and efficient amination process. J. Am. Chem. Soc. 115, 8050–8059 (1993)

    Article  CAS  Google Scholar 

  27. Moss, R.A., Xue, S., Liu, W.: Mechanistic origins of acyloxydiazirines. J. Am. Chem. Soc. 116, 10821–10822 (1994)

    Article  CAS  Google Scholar 

  28. Moss, C.L., Chamot-Rooke, J., Brown, J., Campuzano, I., Richardson, K., Williams, J., Bush, M., Bythell, B., Paizs, B., Turecek, F.: Assigning structures to gas-phase peptide cations and cation-radicals. An infrared multiphoton dissociation, ion mobility, electron transfer and computational study of a histidine peptide ion. J. Phys. Chem. B 106, 3445–3456 (2012)

    Article  Google Scholar 

  29. Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)

    Article  CAS  Google Scholar 

  30. Janz, J.M., Ren, Y., Looby, R., Kazmi, M.A., Sachdev, P., Grunbeck, A., Haggis, L., Chinnapen, D., Lin, A.Y., Seibert, C., McMurry, T., Carlson, K.E., Muir, T.W., Hunt, S., Sakmar, T.P.: Direct interaction between an allosteric agonist pepducin and the chemokine receptor CXCR4. J. Am. Chem. Soc. 133, 15878–15881 (2011)

    Article  CAS  Google Scholar 

  31. Coste, J., LeNguyen, D., Castro, B.: PyBOP@: A new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett. 31, 205–208 (1990)

    Article  CAS  Google Scholar 

  32. Compton, P.D., Strukl, J.V., Bai, D.L., Shabanowitz, J., Hunt, D.F.: Optimization of electron transfer dissociation via informed selection of reagents and operating parameters. Anal. Chem. 84, 1781–1785 (2012)

    Article  CAS  Google Scholar 

  33. Moss, C.L., Chung, T.W., Wyer, J.A., Nielsen, S.B., Hvelplund, P., Tureček, F.: Dipole-guided electron capture causes abnormal dissociations of phosphorylated pentapeptides. J. Am. Soc. Mass Spectrom. 22, 731–751 (2011)

    Article  CAS  Google Scholar 

  34. Stewart, J.J.P.: Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)

    Article  CAS  Google Scholar 

  35. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford (2009)

    Google Scholar 

  36. Becke, A.D.: New mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  CAS  Google Scholar 

  37. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  38. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  39. Møller, C., Plesset, M.S.: A note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)

    Article  Google Scholar 

  40. Tureček, F., Wolken, J.K.: Dissociation energies and kinetics of aminopyrimidinium radicals by ab initio and density functional theory. J. Phys. Chem. A 103, 1905–1912 (1999)

    Article  Google Scholar 

  41. Wolken, J.K., Tureček, F.: Heterocyclic radicals in the gas phase. Experimental and computational study of 3-hydroxypyridinium radicals and cations. J. Am. Chem. Soc. 121, 6010–6018 (1999)

    Article  CAS  Google Scholar 

  42. Wolken, J.K., Tureček, F.: Modeling nucleobase radicals in the gas phase. Experimental and computational study of 2-hydroxypyridinium and 2-(1H)pyridone radicals. J. Phys. Chem. A 103, 6268–6281 (1999)

    Article  CAS  Google Scholar 

  43. Furche, F., Ahlrichs, A.: Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117, 7433–7447 (2002)

    Article  CAS  Google Scholar 

  44. Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)

    Article  CAS  Google Scholar 

  45. Liu, J., Liang, X., McLuckey, S.A.: On the value of knowing a z• ion for what it is. J. Proteome Res. 7, 130–137 (2008)

    Article  CAS  Google Scholar 

  46. Sun, Q., Nelson, H., Stolz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2009)

    Article  CAS  Google Scholar 

  47. Chung, T.W., Tureček, F.: Backbone and side-chain specific dissociations of z ions from non-tryptic peptides. J. Am. Soc. Mass Spectrom. 21, 1279–1295 (2010)

    Article  CAS  Google Scholar 

  48. Ledvina, A.R., Chung, T.W., Hui, R., Coon, J.J., Turecek, F.: Cascade dissociations of peptide cation-radicals. Part 2. Infrared multiphoton dissociation and mechanistic studies of z-ions from pentapeptides. J. Am. Soc. Mass Spectrom. 23, 1351–1363 (2012)

    Article  CAS  Google Scholar 

  49. Haag, N., Holm, A.I.S., Johansson, H.A.B., Zettergren, H., Schmidt, H.T., Nielsen, SB., Hvelplund, P., Cederquist, H.: Electron capture induced dissociation of doubly protonated pentapeptides: Dependence on molecular structure and charge separation. J. Chem. Phys. 134, 035102/1–035102/6 (2011)

    Article  CAS  Google Scholar 

  50. Tureček, F.: The use of labeled compounds. In: Splitter, J.S., Turecek, F. (eds.) Applications of Mass Spectrometry to Organic Stereochemistry, Appendix 1. VCH Publishers, New York (1994)

    Google Scholar 

  51. NIST Standard Reference Database Number 69, available at: http://webbook.nist.gov/chemistry/. Accessed 24 Mar 2013

  52. Hopkinson, A.C.: Radical cations of amino acids and peptides: Structures and stabilities. Mass Spectrom. Rev. 28, 655–671 (2009)

    Article  CAS  Google Scholar 

  53. Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., Harrison, A.G.: Why are b ions stable species in peptide spectra? J. Am. Soc. Mass Spectrom. 6, 1165–1174 (1995)

    Article  CAS  Google Scholar 

  54. Harrison, A.G.: The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 16, 201–217 (1997)

    Article  CAS  Google Scholar 

  55. Elson, C.M., Liu, M.T.H., Mailer, C.E.S.R.: Studies of diazirine anion radicals. J. Chem. Soc. Chem. Commun. 504–506. doi:10.1039/C39860000504 (1986)

  56. Yao, C., Turecek, F.: Hypervalent ammonium radicals. Competitive N–C and N–H bond dissociations in methylammonium and ethylammonium. Phys. Chem. Chem. Phys. 7, 912–920 (2005)

    Article  CAS  Google Scholar 

  57. Holm, A.I.S., Larsen, M.K., Panja, S., Hvelplund, P., Nielsen, S.B., Leib, R.D., Donald, W.A., Williams, E.R., Hao, C., Tureček, F.: Electron capture, femtosecond electron transfer and theory: A study of noncovalent crown ether 1, n-diammonium alkane complexes. Int. J. Mass Spectrom. 276, 116–126 (2008)

    Article  CAS  Google Scholar 

  58. Chung, T.W., Turecek, F.: Selecting fixed-charge groups for electron-based peptide dissociations. A computational study of pyridinium tags. Int. J. Mass Spectrom. 276, 127–135 (2008)

    Article  CAS  Google Scholar 

  59. Neff, D., Sobczyk, M., Simons, J.: Through-space and through-bond electron transfer within positively charged peptides in the gas phase. Int. J. Mass Spectrom. 276, 91–101 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by a grant to F.T. from the National Science Foundation (CHE-1055132) is gratefully acknowledged. K.L. thanks the ARCS foundation for financial support. Instrumentation support for the low-resolution ETD mass spectra measurements was provided by the University of Washington Proteomics Resource (Dr. Priska von Haller). The authors thank Drs. Rob Moritz and Sarah Lee of the Seattle Institute for Systems Biology for providing access to the Thermo-Fisher Orbitrap Velos ETD instrument, and Dr. Jan Urban for advice with peptide syntheses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Tureček.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2987 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marek, A., Pepin, R., Peng, B. et al. Electron Transfer Dissociation of Photolabeled Peptides. Backbone Cleavages Compete with Diazirine Ring Rearrangements. J. Am. Soc. Mass Spectrom. 24, 1641–1653 (2013). https://doi.org/10.1007/s13361-013-0630-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0630-0

Key words

Navigation