Skip to main content
Log in

MALDI-FTICR MS Imaging as a Powerful Tool to Identify Paenibacillus Antibiotics Involved in the Inhibition of Plant Pathogens

  • Focus: MS in the Characterization of Microorganisms: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Nowadays, microorganisms are more and more often used as biocontrol agents for crop protection against diseases. Among them, bacteria of Bacillus and Paenibacillus genders are already used as commercial biocontrol agents. Their mode of action is supposed to be related to their production of antibiotics, such as cyclic lipopeptides, which exhibit great antimicrobial activities. We chose to work with a Paenibacillus polymyxa strain (Pp56) very resistant to various microorganisms. The bacteria were grown simultaneously with Fusarium oxysporum and we applied matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR) mass spectrometry to identify the antibiotics compounds present in the fungus growth inhibition area. We, therefore, identified fusaricidins A, B, and C and numerous members of the LI-F antibiotics family. MALDI-FTICR mass spectrometry imaging was then used to follow the diffusion of lipopeptides involved in the inhibitory activity over time. We analyzed the molecular content of the inhibitory area at different Pp56 and Fusarium incubation durations and concluded that some lipopeptides such as fusaricidin B and a mixture of LI-F05b/06b/08a were mainly involved in the defense mechanism of Pp56. Our study confirms that MALDI imaging may be a powerful tool to quickly determine which molecular species is involved in an antagonism with another microorganism, avoiding time-consuming steps of extraction, purification, and activity tests, which are still commonly used in microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McSpadden Gardener, B.B.: Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94, 1252–1258 (2004)

    Article  CAS  Google Scholar 

  2. Lugtenberg, B., Kamilova, F.: Plant-growth-promoting-rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009)

    Article  CAS  Google Scholar 

  3. Chen, X.H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., Borriss, R.: Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140, 27–37 (2009)

    Article  CAS  Google Scholar 

  4. Rückert, C., Blom, J., Chen, X., Reva, O., Borriss, R.: Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Bioetchnol 155, 78–85 (2011)

    Article  Google Scholar 

  5. Stein, T.: Bacillus subtilis antibiotics: structures, syntheses, and specific functions. Mol. Microbiol. 56, 845–857 (2005)

    Article  CAS  Google Scholar 

  6. Finking, R., Marahiel, M.A.: Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol. 58, 453–488 (2004)

    Article  CAS  Google Scholar 

  7. Ongena, M., Jacques, P.: Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125 (2008)

    Article  CAS  Google Scholar 

  8. Raaijmakers, J.M., de Bruijn, I., Nybroe, O., Ongena, M.: Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34, 1037–1062 (2010)

    CAS  Google Scholar 

  9. Beatty, P.H., Jensen, S.E.: Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48, 159–169 (2002)

    Article  CAS  Google Scholar 

  10. Kajimura, Y., Kaneda, M.: Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 49, 129–135 (1996)

    Article  CAS  Google Scholar 

  11. Kuroda, J., Fukai, T., Konishi, M., Ono, J., Kurusu, K., Nomura, T.: LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles 53, 1533–1549 (2000)

    Article  CAS  Google Scholar 

  12. Raza, W., Yang, X., Wu, H., Wang, Y., Xu, Y., Shen, Q.: Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur. J. Plant Pathol. 125, 471–483 (2009)

    Article  CAS  Google Scholar 

  13. Timmusk, S., Van West, P., Gow, N.A.R., Paul Huffstutler, R.: Paenibacillus polymyxa antagonizes oomycete plant pathogens phytophthora palmivora and pythium aphanidermatum. J. Appl. Microbiol. 106, 1473–1481 (2009)

    Article  CAS  Google Scholar 

  14. Guo, Y., Huang, E., Yuan, C., Zhang, L., Yousef, A.E.: Isolation of a Paenibacillus sp. Strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl. Environ. Mircobiol. 78, 3156–3165 (2012)

    Article  CAS  Google Scholar 

  15. Li, J., Jensen, S.E.: Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a d-amino acid. Chem. Biol. 15, 118–127 (2008)

    Article  Google Scholar 

  16. Martin, N.I., Hu, H., Moake, M.M., Churey, J.J., Whittal, R., Worobo, R.W., Vederas, J.C.: Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278, 13124–13132 (2003)

    Article  CAS  Google Scholar 

  17. He, Z., Kisla, D., Zhang, L., Yuan, C., Green-Church, K.B., Yousef, A.E.: Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Mircobiol. 73, 168–178 (2007)

    Article  CAS  Google Scholar 

  18. Huang, E., Yousef, A.E.: Draft genome sequence of Paenibacillus polymyxa OSY-DF, which coproduces a lantibiotic, paenibacillin, and polymyxin E1. J. Bacteriol. 194, 4739–4740 (2012)

    Article  CAS  Google Scholar 

  19. Wu, X.C., Shen, X.B., Ding, R., Qian, C.D., Fang, H.H., Li, O.: Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol. Lett. 310, 32–38 (2010)

    Article  CAS  Google Scholar 

  20. Niu, B., Rueckert, C., Blom, J., Wang, Q., Borriss, R.: The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides. J. Bacteriol. 193, 5862–5863 (2011)

    Article  CAS  Google Scholar 

  21. Chung, S., Kong, H., Buyer, J.S., Lakshman, D.K., Lydon, J., Kim, S.D., Roberts, D.P.: Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechn. 80, 115–123 (2008)

    Article  CAS  Google Scholar 

  22. Mora, I., Cabrefiga, J., Montesinos, E.: Antimicrobial peptide genes in Bacillus strains from plant environments. Int. Microbiol. 14, 213–223 (2011)

    CAS  Google Scholar 

  23. Borriss, R., Chen, X.H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P., Spröer, C., Junge, H., Vater, J., Pühler, A., Klenk, H.P.: Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 T and FZB42 T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Micr 61, 1786–1801 (2011)

    Article  CAS  Google Scholar 

  24. Taban, I. M., Altelaar, A. F. M., van der Burgt, Y. E. M., McDonnell, L. A., Heeren, R. M. A., Fuchser, J., Baykut, G. Imaging of Peptides in the Rat Brain Using MALDI-FTICR Mass Spectrometry. J. Am. Soc. Mass Spectrom 18, 145–151 (2007)

    Google Scholar 

  25. Deng, Y., Lu, Z., Bi, H., Lu, F., Zhang, C., Bie, X.: Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B 6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32, 1917–1923 (2011)

    Article  CAS  Google Scholar 

  26. Caprioli, R.M., Farmer, T.B., Gile, J.: Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997)

    Article  CAS  Google Scholar 

  27. Watrous, J.D., Dorrestein, P.C.: Imaging mass spectrometry in microbiology. Nat. Rev. Micro. 9, 683–694 (2011)

    Article  CAS  Google Scholar 

  28. Yang, Y.L., Xu, Y., Straight, P., Dorrestein, P.C.: Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 5, 885–888 (2009)

    Article  CAS  Google Scholar 

  29. Hoefler, B.C., Gorzelnik, K.V., Yang, J.Y., Hendricks, N., Dorrestein, P.C., Straight, P.D.: Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc. Natl. Acad. Sci. U. S. A. 109, 13082–13087 (2012)

    Article  CAS  Google Scholar 

  30. Barger, S., Hoefler, B.C., Cubillos-Ruiz, A., Russell, W., Russell, D., Straight, P.: Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Anton. Leeuw. Int. J. G 102, 435–445 (2012)

    Article  CAS  Google Scholar 

  31. Moree, W.J., Phelan, V.V., Wu, C.H., Bandeira, N., Cornett, D.S., Duggan, B.M., Dorrestein, P.C.: Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 109, 13811–13816 (2012)

    Article  CAS  Google Scholar 

  32. Touré, Y., Ongena, M., Jacques, P., Guiro, A., Thonart, P.: Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96, 1151–1160 (2004)

    Article  Google Scholar 

  33. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M.: The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant. Biol. 57, 233–266 (2006)

    Article  CAS  Google Scholar 

  34. Lugtenberg, B.J., Dekkers, L., Bloemberg, G.V.: Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490 (2001)

    Article  CAS  Google Scholar 

  35. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., Ongena, M.: Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79, 176–191 (2012)

    Article  CAS  Google Scholar 

  36. Nihorimbere, V., Fickers, P., Thonart, P., Ongena, M.: Ecological fitness of Bacillus subtilis BGS3 regarding production of the surfactin lipopeptide in the rhizosphere. Environ. Microbiol. Rep. 1, 124–130 (2009)

    Article  CAS  Google Scholar 

  37. Gross, H., Loper, J.E.: Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26, 1408–1446 (2009)

    Article  CAS  Google Scholar 

  38. Kurusu, K., Ohba, K., Arai, T., Fukushima, K.: New peptide antibiotics LI-F03, F04, F05, F07, and F08 produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. 40, 1506–1514 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.D. and M.O. are post-doctoral researcher and research associate, respectively, at the FRS-FNRS (Fonds National de la Recherche Scientifique, Belgium). H.C..’s Ph.D. thesis is supported by a grant from the Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (F.R.I.A.). The authors thank Laurent Franzil for technical assistance. This work received financial support from the program Fonds de la Recherche Fondamentale Collective (FRFC) n°2.4567.12 (FRS-FNRS, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Debois.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debois, D., Ongena, M., Cawoy, H. et al. MALDI-FTICR MS Imaging as a Powerful Tool to Identify Paenibacillus Antibiotics Involved in the Inhibition of Plant Pathogens. J. Am. Soc. Mass Spectrom. 24, 1202–1213 (2013). https://doi.org/10.1007/s13361-013-0620-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0620-2

Key words

Navigation