Skip to main content
Log in

Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

  • Focus: MS in the Characterization of Microorganisms: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hershko, A., Ciechanover, A.: The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998)

    Article  CAS  Google Scholar 

  2. Welchman, R.L., Gordon, C., Mayer, R.J.: Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005)

    Article  CAS  Google Scholar 

  3. Kim, W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E., Rad, R., Rush, J., Comb, M.J., Harper, J.W., Gygi, S.P.: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 44, 325–340 (2011)

    Article  CAS  Google Scholar 

  4. Wagner, S.A., Beli, P., Weinert, B.T., Nielsen, M.L., Cox, J., Mann, M., Choudhary, C.: A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics. 10, M111 013284 (2011)

    Google Scholar 

  5. Udeshi, N.D., Mani, D.R., Eisenhaure, T., Mertins, P., Jaffe, J.D., Clauser, K.R., Hacohen, N., Carr, S.A.: Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol. Cell. Proteomics. 11, 148–159 (2012)

    Article  CAS  Google Scholar 

  6. Komander, D., Clague, M.J., Urbe, S.: Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009)

    Article  CAS  Google Scholar 

  7. Love, K.R., Catic, A., Schlieker, C., Ploegh, H.L.: Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol. 3, 697–705 (2007)

    Article  CAS  Google Scholar 

  8. Xu, P., Duong, D.M., Seyfried, N.T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., Peng, J.: Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009)

    Article  CAS  Google Scholar 

  9. Newton, K., Matsumoto, M.L., Wertz, I.E., Kirkpatrick, D.S., Lill, J.R., Tan, J., Dugger, D., Gordon, N., Sidhu, S.S., Fellouse, F.A., Komuves, L., French, D.M., Ferrando, R.E., Lam, C., Compaan, D., Yu, C., Bosanac, I., Hymowitz, S.G., Kelley, R.F., Dixit, V.M.: Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008)

    Article  CAS  Google Scholar 

  10. Xiong, Y., Qiu, F., Piao, W., Song, C., Wahl, L.M., Medvedev, A.E.: Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta-activated kinase 1 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated factor 6, and IkappaB kinase gamma and increases A20 expression. J. Biol. Chem. 286, 7905–7916 (2011)

    Article  CAS  Google Scholar 

  11. Matsumoto, M.L., Wickliffe, K.E., Dong, K.C., Yu, C., Bosanac, I., Bustos, D., Phu, L., Kirkpatrick, D.S., Hymowitz, S.G., Rape, M., Kelley, R.F., Dixit, V.M.: K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell. 39, 477–484 (2010)

    Article  CAS  Google Scholar 

  12. Singer, A.U., Rohde, J.R., Lam, R., Skarina, T., Kagan, O., Dileo, R., Chirgadze, N.Y., Cuff, M.E., Joachimiak, A., Tyers, M., Sansonetti, P.J., Parsot, C., Savchenko, A.: Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 15, 1293–1301 (2008)

    Article  CAS  Google Scholar 

  13. Hicks, S.W., Galan, J.E.: Hijacking the host ubiquitin pathway: Structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 13, 41–46 (2010)

    Article  CAS  Google Scholar 

  14. Wu, B., Skarina, T., Yee, A., Jobin, M.C., Dileo, R., Semesi, A., Fares, C., Lemak, A., Coombes, B.K., Arrowsmith, C.H., Singer, A.U., Savchenko, A.: NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLoS Pathog. 6, e1000960 (2010)

    Article  Google Scholar 

  15. Rytkonen, A., Poh, J., Garmendia, J., Boyle, C., Thompson, A., Liu, M., Freemont, P., Hinton, J.C., Holden, D.W.: SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl. Acad. Sci. U. S. A. 104, 3502–3507 (2007)

    Article  Google Scholar 

  16. Catic, A., Misaghi, S., Korbel, G.A., Ploegh, H.L.: ElaD, a Deubiquitinating protease expressed by E coli. PloS One 2, e381 (2007)

    Article  Google Scholar 

  17. Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., Gygi, S.P.: A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003)

    Article  CAS  Google Scholar 

  18. Crinelli, R., Bianchi, M., Menotta, M., Carloni, E., Giacomini, E., Pennati, M., Magnani, M.: Ubiquitin over-expression promotes E6AP autodegradation and reactivation of the p53/MDM2 pathway in HeLa cells. Mol. Cell. Biochem. 318, 129–145 (2008)

    Article  CAS  Google Scholar 

  19. Matsumoto, M., Hatakeyama, S., Oyamada, K., Oda, Y., Nishimura, T., Nakayama, K.I.: Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5, 4145–4151 (2005)

    Article  CAS  Google Scholar 

  20. Vasilescu, J., Smith, J.C., Ethier, M., Figeys, D.: Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J. Proteome. Res. 4, 2192–2200 (2005)

    Article  CAS  Google Scholar 

  21. Xu, G., Paige, J.S., Jaffrey, S.R.: Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28, 868–873 (2010)

    Article  CAS  Google Scholar 

  22. Wagner, S.A., Beli, P., Weinert, B.T., Scholz, C., Kelstrup, C.D., Young, C., Nielsen, M.L., Olsen, J.V., Brakebusch, C., Choudhary, C.: Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol. Cell. Proteomics: MCP 11, 1578–1585 (2012)

    Article  CAS  Google Scholar 

  23. Bustos, D., Bakalarski, C.E., Yang, Y., Peng, J., Kirkpatrick, D.S.: Characterizing ubiquitination sites by peptide-based immunoaffinity enrichment. Mol. Cell. Proteomics: MCP 11, 1529–1540 (2012)

    Article  Google Scholar 

  24. Grabbe, C., Dikic, I.: Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109, 1481–1494 (2009)

    Article  CAS  Google Scholar 

  25. Hurley, J.H., Lee, S., Prag, G.: Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006)

    Article  CAS  Google Scholar 

  26. Raasi, S., Varadan, R., Fushman, D., Pickart, C.M.: Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12, 708–714 (2005)

    Article  CAS  Google Scholar 

  27. Hjerpe, R., Aillet, F., Lopitz-Otsoa, F., Lang, V., England, P., Rodriguez, M.S.: Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10, 1250–1258 (2009)

    Article  CAS  Google Scholar 

  28. Shi, Y., Chan, D.W., Jung, S.Y., Malovannaya, A., Wang, Y., Qin, J.: A data set of human endogenous protein ubiquitination sites. Mol. Cell Proteomics 10, M110 002089 (2011)

    Google Scholar 

  29. Lopitz-Otsoa, F., Rodriguez-Suarez, E., Aillet, F., Casado-Vela, J., Lang, V., Matthiesen, R., Elortza, F., Rodriguez, M.S.: Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J. Proteomics 65, 2998–3014 (2012)

    Article  Google Scholar 

  30. Shi, Y., Xu, P., Qin, J.: Ubiquitinated proteome: Ready for global. Mol. Cell Proteomics 10, R110 006882 (2011)

    Google Scholar 

  31. Manzano, C., Abraham, Z., Lopez-Torrejon, G., Del Pozo, J.C.: Identification of ubiquitinated proteins in Arabidopsis. Plant Mol. Biol. 68, 145–158 (2008)

    Article  CAS  Google Scholar 

  32. Mayor, T., Graumann, J., Bryan, J., MacCoss, M.J., Deshaies, R.J.: Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell Proteomics 6, 1885–1895 (2007)

    Article  CAS  Google Scholar 

  33. Livesay, E.A., Tang, K., Taylor, B.K., Buschbach, M.A., Hopkins, D.F., LaMarche, B.L., Zhao, R., Shen, Y., Orton, D.J., Moore, R.J., Kelly, R.T., Udseth, H.R., Smith, R.D.: Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal. Chem. 80, 294–302 (2008)

    Article  CAS  Google Scholar 

  34. Eng, J.K., McCormack, A.L., Yates III, J.R.: An approach to correlate MS/MS data to amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom 5, 976–989 (1994)

    Article  CAS  Google Scholar 

  35. Lopez-Ferrer, D., Martinez-Bartolome, S., Villar, M., Campillos, M., Martin-Maroto, F., Vazquez, J.: Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. Anal. Chem. 76, 6853–6860 (2004)

    Article  CAS  Google Scholar 

  36. Lopez-Ferrer, D., Petritis, K., Hixson, K.K., Heibeck, T.H., Moore, R.J., Belov, M.E., Camp 2nd, D.G., Smith, R.D.: Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: Proteomics on the fly. J. Proteome. Res. 7, 3276–3281 (2008)

    Article  CAS  Google Scholar 

  37. Franco, M., Seyfried, N.T., Brand, A.H., Peng, J., Mayor, U.: A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol. Cell. Proteomics 10, M110 002188 (2011)

    Google Scholar 

  38. Nielsen, M.L., Vermeulen, M., Bonaldi, T., Cox, J., Moroder, L., Mann, M.: Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat. Methods 5, 459–460 (2008)

    Article  CAS  Google Scholar 

  39. Polpitiya, A.D., Qian, W.J., Jaitly, N., Petyuk, V.A., Adkins, J.N., Camp 2nd, D.G., Anderson, G.A., Smith, R.D.: DAnTE: A statistical tool for quantitative analysis of -omics data. Bioinformatics 24, 1556–1558 (2008)

    Article  CAS  Google Scholar 

  40. Donaldson, K.M., Yin, H., Gekakis, N., Supek, F., Joazeiro, C.A.: Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr. Biol. 13, 258–262 (2003)

    Article  CAS  Google Scholar 

  41. Kamitani, T., Kito, K., Fukuda-Kamitani, T., Yeh, E.T.: Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J. Biol. Chem. 276, 46655–46660 (2001)

    Article  CAS  Google Scholar 

  42. Kang, Y., Chen, X., Lary, J.W., Cole, J.L., Walters, K.J.: Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J. Mol. Biol. 369, 168–176 (2007)

    Article  CAS  Google Scholar 

  43. Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., Bilusic, I., Theurillat, J.P., Overvatn, A., Ishii, T., Elazar, Z., Komatsu, M., Dikic, I., Johansen, T.: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009)

    Article  CAS  Google Scholar 

  44. Lim, P.J., Danner, R., Liang, J., Doong, H., Harman, C., Srinivasan, D., Rothenberg, C., Wang, H., Ye, Y., Fang, S., Monteiro, M.J.: Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J. Cell Biol. 187, 201–217 (2009)

    Article  CAS  Google Scholar 

  45. Long, J., Gallagher, T.R., Cavey, J.R., Sheppard, P.W., Ralston, S.H., Layfield, R., Searle, M.S.: Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J. Biol. Chem. 283, 5427–5440 (2008)

    Article  CAS  Google Scholar 

  46. Prag, G., Misra, S., Jones, E.A., Ghirlando, R., Davies, B.A., Horazdovsky, B.F., Hurley, J.H.: Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell 113, 609–620 (2003)

    Article  CAS  Google Scholar 

  47. Zhang, D., Chen, T., Ziv, I., Rosenzweig, R., Matiuhin, Y., Bronner, V., Glickman, M.H., Fushman, D.: Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol. Cell 36, 1018–1033 (2009)

    Article  CAS  Google Scholar 

  48. Zhang, D., Raasi, S., Fushman, D.: Affinity makes the difference: Nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J. Mol. Biol. 377, 162–180 (2008)

    Article  CAS  Google Scholar 

  49. Zhang, N., Wang, Q., Ehlinger, A., Randles, L., Lary, J.W., Kang, Y., Haririnia, A., Storaska, A.J., Cole, J.L., Fushman, D., Walters, K.J.: Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol. Cell 35, 280–290 (2009)

    Article  Google Scholar 

  50. Isogai, S., Morimoto, D., Arita, K., Unzai, S., Tenno, T., Hasegawa, J., Sou, Y.S., Komatsu, M., Tanaka, K., Shirakawa, M., Tochio, H.: Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin. J. Biol. Chem. 286, 31864–31874 (2011)

    Article  CAS  Google Scholar 

  51. Paul, F.E., Hosp, F., Selbach, M.: Analyzing protein-protein interactions by quantitative mass spectrometry. Methods 54, 387–395 (2011)

    Article  CAS  Google Scholar 

  52. Lichty, J.J., Malecki, J.L., Agnew, H.D., Michelson-Horowitz, D.J., Tan, S.: Comparison of affinity tags for protein purification. Protein Expr. Purif. 41, 98–105 (2005)

    Article  CAS  Google Scholar 

  53. Perkins, D.J., Qureshi, N., Vogel, S.N.: A Toll-like receptor-responsive kinase, protein kinase R, is inactivated in endotoxin tolerance through differential K63/K48 ubiquitination. MBio 1 (2010)

  54. Cannon, J., Nakasone, M., Fushman, D., Fenselau, C.: Proteomic identification and analysis of K63-linked ubiquitin conjugates. Anal. Chem. 84, 10121–10128 (2012)

    Article  CAS  Google Scholar 

  55. Kirkpatrick, D.S., Weldon, S.F., Tsaprailis, G., Liebler, D.C., Gandolfi, A.J.: Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics 5, 2104–2111 (2005)

    Article  CAS  Google Scholar 

  56. Haley, B., Paunesku, T., Protic, M., Woloschak, G.E.: Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. Int. J. Radiat. Biol. 85, 643–655 (2009)

    Article  CAS  Google Scholar 

  57. Kraft, C., Deplazes, A., Sohrmann, M., Peter, M.: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602–610 (2008)

    Article  CAS  Google Scholar 

  58. Yoshida, M., Yoshida, K., Kozlov, G., Lim, N.S., De Crescenzo, G., Pang, Z., Berlanga, J.J., Kahvejian, A., Gehring, K., Wing, S.S., Sonenberg, N.: Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. EMBO J. 25, 1934–1944 (2006)

    Article  CAS  Google Scholar 

  59. Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., Kopito, R.R.: Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8, 691–696 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Matthew Monroe, Brooke Deatherage-Kaiser, and Alexandra Rutledge for comments, input, and suggestions. This work was supported by the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01; project website www.SysBEP.org) and the National Institute for General Medical Sciences (GM094623). Proteomics capabilities were developed under support from the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER), NIH grant 5P41RR018522-10 and National Institute of General Medical Sciences grant 8 P41 GM103493-10. Significant portions of this work were performed using EMSL, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under Contract DE-AC05-76RLO1830.

Data Availability

The LC-MS/MS results are available at www.SysBEP.org that includes links to the raw proteomics data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua N. Adkins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayasu, E.S., Ansong, C., Brown, J.N. et al. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes. J. Am. Soc. Mass Spectrom. 24, 1214–1223 (2013). https://doi.org/10.1007/s13361-013-0619-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0619-8

Key words

Navigation