Skip to main content
Log in

Cation Recombination Energy/Coulomb Repulsion Effects in ETD/ECD as Revealed by Variation of Charge per Residue at Fixed Total Charge

  • Focus: Electron Transfer Dissociation: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1–10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n = 1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n = 1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. McLuckey, S.A., Mentinova, M.: Ion/neutral, ion/electron, ion/photon, and ion/ion interactions in tandem mass spectrometry: Do we need them all? Are they enough? J. Am. Soc. Mass Spectrom. 22, 3–12 (2011)

    Article  CAS  Google Scholar 

  2. Wells, J.M., McLuckey, S.A.: Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 402, 148–185 (2005)

    Article  CAS  Google Scholar 

  3. Little, D.P., Speir, J.P., Senko, M.W., O’Connor, P.B., McLafferty, F.W.: Infrared multiphoton dissociation of large multiply-charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (1994)

    Article  CAS  Google Scholar 

  4. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  5. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 101, 9528–9533 (2004)

    Article  CAS  Google Scholar 

  6. Coon, J.J.: Collisions or electrons? Protein sequence analysis in the 21st century. Anal. Chem. 81, 3208–3215 (2009)

    Article  CAS  Google Scholar 

  7. Coon, J.J., Syka, J.E.P., Shabanowitz, J., Hunt, D.F.: Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int. J. Mass Spectrom. 236, 33–42 (2004)

    Article  CAS  Google Scholar 

  8. Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Electron-transfer ion/ion reactions of doubly protonated peptides: Effect of elevated bath gas temperature. Anal. Chem. 77, 5662–5669 (2005)

    Article  CAS  Google Scholar 

  9. Gunawardena, H.P., Gorenstein, L., Erickson, D.E., Xia, Y., McLuckey, S.A.: Transmission mode ion/ion electron-transfer dissociation in a linear ion trap. Int. J. Mass Spectrom. 265, 130–138 (2007)

    Article  CAS  Google Scholar 

  10. Breuker, K., Oh, H., Lin, C., Carpenter, B.K., McLafferty, F.W.: Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl. Acad. Sci. U.S.A. 101, 14011–14016 (2004)

    Article  CAS  Google Scholar 

  11. Tureček, F.: N–Cα bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a non-ergodic process? J. Am. Chem. Soc. 125, 5954–5963 (2003)

    Article  Google Scholar 

  12. Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121, 2857–2866 (1999)

    Article  CAS  Google Scholar 

  13. Zubarev, R.A.: Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom Rev. 22, 57–77 (2003)

    Article  CAS  Google Scholar 

  14. Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F.: Towards an understanding of the mechanism of electron-capture dissociation: A historical perspective and modern ideas. Eur. J. Mass Spectrom. 8, 337–349 (2002)

    Article  CAS  Google Scholar 

  15. Hudgins, R., Hakansson, K., Quinn, J.P., Hendrickson, C.L., Marshall, A.G.: Proceedings of the 50th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, Florida (June 2–6, 2002) A020420

  16. Syrstad, E.A., Tureček, F.: Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 16, 208–224 (2005)

    Article  CAS  Google Scholar 

  17. Sobczyk, M., Anusiewicz, W., Berdys-Kochanska, J., Sawicka, A., Skurski, P., Simons, J.: Coulomb-assisted dissociative electron attachment: Application to a model peptide. J. Phys. Chem. A 109, 250–258 (2005)

    Article  CAS  Google Scholar 

  18. Anusiewicz, W., Berdys-Kochanska, J., Simons, J.: Electron attachment step in electron capture dissociation (ECD) and electron transfer dissociation (ETD). J. Phys. Chem. A 109, 5801–5813 (2005)

    Article  CAS  Google Scholar 

  19. Anusiewicz, W., Berdys-Kochanska, J., Skurski, P., Simons, J.: Simulating electron transfer attachment to a positively charged model peptide. J. Phys. Chem. A 110, 1261–1266 (2006)

    Article  CAS  Google Scholar 

  20. Sobczyk, M., Simons, J.: The role of excited Rydberg states in electron transfer dissociation. J. Phys. Chem. B 110, 7519–7527 (2006)

    Article  CAS  Google Scholar 

  21. Neff, D., Simons, J.: Analytical and computational studies of intramolecular electron transfer pertinent to electron transfer and electron capture dissociation mass spectrometry. J. Phys. Chem. A 114, 1309–1323 (2010)

    Article  CAS  Google Scholar 

  22. Simons, J.: Mechanisms for S–S and N–Cα bond cleavage in peptide ECD and ETD mass spectrometry. Chem. Phys. Lett. 484, 81–95 (2010)

    Article  CAS  Google Scholar 

  23. Simons, J.: Analytical model for rates of electron attachment and intramolecular electron transfer in electron transfer dissociation mass spectrometry. J. Am. Chem. Soc. 132, 7074–7085 (2010)

    Article  CAS  Google Scholar 

  24. Moss, C.L., Chung, T.W., Wyer, J.A., Nielsen, S.B., Hvelplund, P., Tureček, F.: Dipole-guided electron capture causes abnormal dissociations of phosphorylated pentapeptides. J. Am. Soc. Mass Spectrom. 22, 731–751 (2011)

    Article  CAS  Google Scholar 

  25. Loo, R.R.O., Udseth, H.R., Smith, R.D.: Evidence of charge inversion in the reaction of singly charged anions with multiply charged macroions. J. Phys. Chem. 95, 6412–6415 (1991)

    Article  CAS  Google Scholar 

  26. Stephenson, J.L., McLuckey, S.A.: Ion/ion reactions in the gas phase: Proton transfer reactions involving multiply-charged proteins. J. Am. Chem. Soc. 118, 7390–7397 (1996)

    Article  CAS  Google Scholar 

  27. Scalf, M., Westphall, M.S., Krause, J., Kaufman, S.L., Smith, L.M.: Controlling charge states of large ions. Science 283, 194–197 (1999)

    Article  CAS  Google Scholar 

  28. Loo, R.R.O., Udseth, H.R., Smith, R.D.: A new approach for the study of gas-phase ion-ion reactions using electrospray ionization. J. Am. Soc. Mass Spectrom. 3, 695–705 (1992)

    Article  CAS  Google Scholar 

  29. Wells, J.M., Chrisman, P.A., McLuckey, S.A.: “Dueling” ESI: Instrumentation to study ion/ion reactions of electrospray-generated cations and anions. J. Am. Soc. Mass Spectrom. 13, 614–622 (2002)

    Article  CAS  Google Scholar 

  30. Wells, J.M., Chrisman, P.A., McLuckey, S.A.: Formation of protein−protein complexes in vacuo. J. Am. Chem. Soc. 123, 12428–12429 (2001)

    Article  CAS  Google Scholar 

  31. He, M., McLuckey, S.A.: Two ion/ion charge inversion steps to form a doubly protonated peptide from a singly protonated peptide in the gas phase. J. Am. Chem. Soc. 125, 7756–7757 (2003)

    Article  CAS  Google Scholar 

  32. He, M., Emory, J.E., McLuckey, S.A.: Reagent anions for charge inversion of polypeptide/protein cations in the gas phase. Anal. Chem. 77, 3173–3182 (2005)

    Article  CAS  Google Scholar 

  33. Landau, L.D.: Zur Theorie der Energieubertragung. II. Phys. Z. 2, 46–51 (1932)

    CAS  Google Scholar 

  34. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137, 696–702 (1932)

    Article  Google Scholar 

  35. McLuckey, S.A.: The emerging role of ion/ion reactions in biological mass spectrometry: Considerations for reagent ion selection. Eur. J. Mass. Spectrom. 16, 429–439 (2010)

    Article  CAS  Google Scholar 

  36. Gunawardena, H.P., He, M., Chrisman, P.A., Pitteri, S.J., Hogan, J.M., Hodges, B.D.M., McLuckey, S.A.: Electron transfer versus proton transfer in gas-phase ion/ion reactions of polyprotonated peptides. J. Am. Chem. Soc. 127, 12627–12639 (2005)

    Article  CAS  Google Scholar 

  37. Baba, T., Hashimoto, Y., Hasegawa, H., Hirabayashi, A., Waki, I.: Electron capture dissociation in a radio frequency ion trap. Anal. Chem. 76, 4263–4266 (2004)

    Article  CAS  Google Scholar 

  38. Silivra, O.A., Kjeldsen, F., Ivonin, I.A., Zubarev, R.A.: Electron capture dissociation of polypeptides in a three-dimensional quadrupole ion trap: Implementation and first results. J. Am. Soc. Mass Spectrom. 16, 22–27 (2005)

    Article  CAS  Google Scholar 

  39. Ling, L., Brancia, F.L.: Electron capture dissociation in a digital ion trap mass spectrometer. Anal. Chem 78, 1995–2000 (2006)

    Article  Google Scholar 

  40. Satake, H., Hasegawa, H., Hirabayashi, A., Hashimoto, Y., Baba, T., Masuda, K.: Fast multiple electron capture dissociation in a linear radio frequency quadrupole ion trap. Anal. Chem. 79, 8755–8761 (2007)

    Article  CAS  Google Scholar 

  41. Xia, Y., Gunawardena, H.P., Erickson, D.E., McLuckey, S.A.: Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations. J. Am. Chem. Soc. 129, 12232–12243 (2007)

    Article  CAS  Google Scholar 

  42. Ivarone, A.T., Peach, K., Williams, E.R.: Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal. Chem. 76, 2231–2238 (2004)

    Article  Google Scholar 

  43. Tsybin, Y.O., Haselmann, K.F., Emmett, M.R., Hendrickson, C.L., Marshall, A.G.: Charge location directs electron capture dissociation of peptide dications. J. Am. Soc. Mass Spectrom. 17, 1704–1711 (2006)

    Article  CAS  Google Scholar 

  44. Crizer, D.M., McLuckey, S.A.: Electron transfer dissociation of amide nitrogen methylated polypeptide cations. J. Am. Soc. Mass Spectrom. 20, 1349–1354 (2009)

    Article  CAS  Google Scholar 

  45. Liu, J., McLuckey, S.A.: Electron transfer dissociation: Effects of cation charge state on product partitioning in ion/ion electron transfer to multiply protonated polypeptides. Int. J. Mass Spectrom. 330/332, 174–181 (2012)

    Google Scholar 

  46. Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteom. 6, 1942–1951 (2007)

    Article  CAS  Google Scholar 

  47. Pitteri, S.J., Chrisman, P.A., Hogan, J.M., McLuckey, S.A.: Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: Reactions of doubly and triply protonated peptides with SO2 -•. Anal. Chem. 77, 1831–1839 (2005)

    Article  CAS  Google Scholar 

  48. Reid, G.E., Simpson, R.J., O’Hair, R.A.J.: A mass spectrometric and ab initio study of the pathways for dehydration of simple glycine and cysteine-containing peptide [M + H]+ ions. J. Am. Soc. Mass Spectrom. 9, 945–956 (1998)

    Article  CAS  Google Scholar 

  49. Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)

    Google Scholar 

  50. Liang, X., Xia, Y., McLuckey, S.A.: Alternately pulsed nanoelectrospray ionization/atmospheric pressure chemical ionization for ion/ion reactions in an electrodynamic ion trap. Anal. Chem. 78, 3208–3212 (2006)

    Article  CAS  Google Scholar 

  51. Xia, Y., Wu, J., Londry, F.A., Hager, J.W., McLuckey, S.A.: Mutual storage mode ion/ion reactions in a hybrid linear ion trap. J. Am. Soc. Mass Spectrom. 16, 71–81 (2005)

    Article  CAS  Google Scholar 

  52. Xia, Y., Liang, X., McLuckey, S.A.: Pulsed dual electrospray ionization for ion/ion reactions. J. Am. Soc. Mass Spectrom. 16, 1750–1756 (2005)

    Article  CAS  Google Scholar 

  53. Londry, F.A., Hager, J.W.: Mass selective axial ion ejection from a linear quadrupole ion trap. J. Am. Soc. Mass Spectrom. 14, 1130–1147 (2003)

    Article  CAS  Google Scholar 

  54. Compton, P.D., Strukl, J.V., Bai, D.L., Shabanowitz, J., Hunt, D.F.: Optimization of electron transfer dissociation via informed selection of reagents and operating parameters. Anal. Chem. 84, 1781–1785 (2012)

    Article  CAS  Google Scholar 

  55. Mahan, B.H.: Recombination of gaseous ions. Adv. Chem. Phys. 23, 1–40 (1973)

    Article  CAS  Google Scholar 

  56. Olson, R.E.: Absorbing-sphere model for calculating ion-ion recombination total cross sections. J. Chem. Phys. 56, 2979–2991 (1972)

    Article  CAS  Google Scholar 

  57. Olson, R.E., Smith, F.T., Bauer, E.: Estimation of the coupling matrix elements for one-electron transfer systems. Appl. Opt. 10, 1848–1855 (1971)

    Article  CAS  Google Scholar 

  58. Budnik, B.A., Tsybin, Y.O., Hakansson, P., Zubarev, R.A.: Ionization energies of multiply protonated polypeptides obtained by tandem ionization in Fourier transform mass spectrometers. J. Mass Spectrom. 37, 1141–1144 (2002)

    Article  CAS  Google Scholar 

  59. Stephenson Jr., J.L., McLuckey, S.A.: Ion/ion reactions in the gas-phase: Proton transfer reactions involving multiply-charged proteins. J. Am. Chem. Soc. 118, 7390–7397 (1996)

    Article  CAS  Google Scholar 

  60. Wells, J.M., Chrisman, P.A., McLuckey, S.A.: Formation and characterization of protein–protein complexes in vacuo. J. Am. Chem. Soc. 125, 7238–7249 (2003)

    Article  CAS  Google Scholar 

  61. Bates, D.R., Morgan, W.L.: New recombination mechanism -tidal termolecular ionic recombination. Phys. Rev. Lett. 64, 2258–2260 (1990)

    Article  CAS  Google Scholar 

  62. Morgan, W.L., Bates, D.R.: Tidal termolecular ionic recombination. J. Phys. B At. Mol. Opt. Phys. 25, 5421–5430 (1992)

    Article  CAS  Google Scholar 

  63. Tureček, F., Jones, J.W., Towle, T., Panja, S., Nielsen, S.B., Hvelplund, P., Paizs, B.: Hidden histidine radical rearrangements upon electron transfer to gas-phase peptide ions. Experimental evidence and theoretical analysis. J. Am. Chem. Soc. 130, 14584–14596 (2008)

    Article  Google Scholar 

  64. Tureček, F., Chen, X.H., Hao, C.T.: Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase. J. Am. Chem. Soc. 10, 8818–8833 (2008)

    Google Scholar 

  65. Chung, T.W., Tureček, F.: Amplified histidine effect in electron transfer dissociation of histidine rich peptides from histatin 5. Int. J. Mass Spectrom. 306, 99–107 (2011)

    Article  CAS  Google Scholar 

  66. Tureček, F., Chung, T.W., Moss, C.L., Wyer, J.A., Ehlerding, A., Holm, A.I.S., Zettergren, H., Nielsen, S.B., Hvelplund, P., Rooke, J.C., Bythell, B., Paizs, B.: The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals. J. Am. Chem. Soc. 132, 10728–10740 (2010)

    Article  Google Scholar 

  67. Chen, X., Tureček, F.: The arginine anomaly: Arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations. J. Am. Chem. Soc. 128, 12520–12530 (2006)

    Article  CAS  Google Scholar 

  68. Tsybin, Y.O., Haselmann, K.F., Emmett, M.R., Hendrickson, C.L., Marshall, A.G.: Charge location directs electron capture dissociation. J. Am. Soc. Mass Spectrom. 17, 1704–1711 (2006)

    Article  CAS  Google Scholar 

  69. Vorobyev, A., Ben Hamidane, H., Tsybin, Y.O.: Electron capture dissociation product ion abundances at the X amino acid in RAAAA-X-AAAAK peptides correlate with amino acid polarity and radical stability. J. Am. Soc. Mass Spectrom. 20, 2273–2283 (2003)

    Article  Google Scholar 

  70. Simons, J., Ledvina, A.R.: Spatial extent of fragment-ion abundances in electron transfer dissociation and electron capture dissociation mass spectrometry of peptides. Int. J. Mass Spectrom. 330, 84–94 (2012)

    Google Scholar 

  71. Tureček, F., Moss, C.L., Chung, T.W.: Correlating ETD fragment ion intensities with peptide ion conformational and electronic structure. Int. J. Mass Spectrom. 330, 207–219 (2012)

    Google Scholar 

  72. van der Rest, G., Hui, R., Frison, G., Chamot-Rooke, J.: Dissociation channel dependence on peptide size observed in electron capture dissociation of tryptic peptides. J. Am. Soc. Mass Spectrom. 22, 1631–1644 (2011)

    Article  Google Scholar 

  73. Syrstad, E.A., Stephens, D.D., Tureček, F.: Hydrogen atom adducts to the amide bond. Generation and energetics of amide radicals in the gas phase. J. Phys. Chem. A 107, 115–126 (2003)

    Article  CAS  Google Scholar 

  74. Moss, C.L., Liang, W., Li, X., Tureček, F.: The early life of a peptide cation-radical. Ground and excited-state trajectories of electron-based peptide dissociations during the first 330 femtoseconds. J. Am. Soc. Mass Spectrom. 23, 446–459 (2012)

    Article  CAS  Google Scholar 

  75. Meisels, G.G., Verboom, G.M.L., Weiss, M.J., Hsieh, T.: Angular momentum in ion-molecule reactions. J. Am. Chem. Soc. 101, 7189–7195 (1979)

    Article  CAS  Google Scholar 

  76. Chesnavich, W.J., Bowers, M.T.: Statistical phase space theory of polyatomic systems. Application to the cross section and product kinetic energy distribution of the reaction C2H4 +• + C2H4 → C3H5+ + CH3 . J. Am. Chem. Soc. 98, 8301–8309 (1976)

    Article  CAS  Google Scholar 

  77. Chesnavich, W.J., Bowers, M.T.: Statistical phase space theory of polyatomic systems: Rigorous energy and angular momentum conservation in reactions involving symmetric polyatomic species. J. Chem. Phys. 66, 2306–2315 (1977)

    Article  CAS  Google Scholar 

  78. Verboom, G.M.L., Meisels, G.G.: Angular momentum distributions in collision processes and the location of the transition state in ion-molecule reactions. J. Chem. Phys. 68, 2714–2717 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.M.C. acknowledges support from a grant from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under award DE-FG02-00ER15105. M.M. and W.M.M. acknowledge support from the National Institutes of Health under grant GM 45372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. McLuckey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentinova, M., Crizer, D.M., Baba, T. et al. Cation Recombination Energy/Coulomb Repulsion Effects in ETD/ECD as Revealed by Variation of Charge per Residue at Fixed Total Charge. J. Am. Soc. Mass Spectrom. 24, 1676–1689 (2013). https://doi.org/10.1007/s13361-013-0606-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0606-0

Key words

Navigation