Skip to main content
Log in

Enhanced Detection of Ubiquitin Isopeptides Using Reductive Methylation

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Identification of ubiquitination (Ub) sites is of great interest due to the critical roles that the modification plays in cellular regulation. Current methods using mass spectrometry rely upon tryptic isopeptide diglycine tag generation followed by database searching. We present a novel approach to ubiquitin detection based upon the dimethyl labeling of isopeptide N-termini glycines. Ubiquitinated proteins were digested with trypsin and the resulting peptide mixture was derivatized using formaldehyde-D2 solution and sodium cyanoborohydride. The dimethylated peptide mixtures were next separated by liquid chromatography and analyzed on a quadrupole-TOF based mass spectrometer. Diagnostic b2′ and a1′ ions released from the isopeptide N-terminus upon collision-induced dissociation (CID) were used to spectrally improve the identification of ubiquitinated isopeptides. Proof of principle was established by application to a ubiquitinated protein tryptic digest spiked into a six-protein mix digest background. Extracted ion chromatograms of the a1′ and b2′ diagnostic product ions from the diglycine tag resulted in a significant reduction in signal complexity and demonstrated a selectivity towards the identification of diglycine branched isopeptides. The method was further shown to be capable of identifying diglycine isopeptides resulting from in-gel tryptic digests of ubiquitin enriched material from a His-Ub transfected cell line. We envisage that these ions may be utilized in global ubiquitination studies with post-acquisition MS/MS (or MSe) data interrogation on high resolution hybrid mass spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Goldknopf, I.L., Taylor, C.W., Baum, R.M., Yeoman, L.C., Olson, M.O., Prestayko, A.W.: H. Busch, H. Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J. Biol. Chem. 250, 7182–7187 (1975)

    CAS  Google Scholar 

  2. Ciechanover, A., Finley, D., Varshavsky, A.: Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984)

    Article  CAS  Google Scholar 

  3. Finley, D., Ciechanover, A., Varshavsky, A.: Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984)

    Article  CAS  Google Scholar 

  4. Levinger, L., Varshavsky, A.: Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28, 375–385 (1982)

    Article  CAS  Google Scholar 

  5. Mukhopadhyay, D., Riezman, H.: Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007)

    Article  CAS  Google Scholar 

  6. Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., Gygi, S.P.: A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 8, 921–926 (2003)

    Article  Google Scholar 

  7. Komander, D., Clague, M.J., Urbe, S.: Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009)

    Article  CAS  Google Scholar 

  8. Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., Bernards, R.: A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005)

    Article  CAS  Google Scholar 

  9. Tomlinson, E., Palaniyappan, N., Tooth, D., Layfield, R.: Methods for the purification of ubiquitinated proteins. Proteomics 7, 1016–1022 (2007)

    Article  CAS  Google Scholar 

  10. Ota, K., Kito, K., Iemura, S., Natsume, T., Ito, T.: A parallel affinity purification method for selective isolation of polyubiquitinated proteins. Proteomics 8, 3004–3007 (2008)

    Article  CAS  Google Scholar 

  11. Bustos, D., Bakalarski, C.E., Yang, Y., Peng, J., Kirkpatrick, D.S.: Characterizing ubiquitination sites by peptide based immunoaffinity enrichment. Mol. Cell. Proteomics 11, 1529–1540 (2012)

    Google Scholar 

  12. Udeshi, N.D., Mani, D.R., Eisenhaure, T., Mertins, P., Jaffe, J.D., Clauser, K.R., Hacohen, N., Carr, S.A.: Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol. Cell. Proteomics 5, 148–159 (2012)

    Google Scholar 

  13. Goldknopf, I.L., Busch, H.: Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate protein A24. Proc. Natl. Acad. Sci. U. S. A. 74, 864–868 (1977)

    Article  CAS  Google Scholar 

  14. Peng, J., Gygi, S.P.: Proteomics: the move to mixtures. J. Mass Spectrom. 361, 83–91 (2001)

    Google Scholar 

  15. Marotti, J.L.A., Newitt, R., Wang, Y., Aebersold, R., Dohlman, H.G.: Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41, 5067–5074 (2002)

    Article  CAS  Google Scholar 

  16. Chen, P.-C., Na, C.H., Peng, J.: Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 43, 1049–1060 (2012)

    Article  CAS  Google Scholar 

  17. Low, T.Y., Magliozzi, R., Guardavaccaro, D., Heck, A.J.R.: Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics 13, 1–12 (2012)

    Google Scholar 

  18. Peng, J.: Evaluation of proteomic strategies for analyzing ubiquitinated proteins. BMB Rep. 41, 177–183 (2008)

    Article  CAS  Google Scholar 

  19. Seyfried, N.T., Xu, P., Duong, D.M., Cheng, D., Hanfelt, J., Peng, J.: Systematic approach for validating the ubiquitinated proteome. Anal. Chem. 80, 4161–4169 (2008)

    Article  CAS  Google Scholar 

  20. Shi, Y., Xu, P., Qin, J.: Ubiquitinated proteome: ready for global? Mol. Cell. Proteomics 10(5) R110.006882 (2011)

    Google Scholar 

  21. Warren, M.R.E., Parker, C.E., Mocanu, V., Klapper, D., Borchers, C.E.: Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic product ions for protein ubiquitination. Rapid Commun. Mass Spectrom. 19, 429–437 (2005)

    Article  CAS  Google Scholar 

  22. Wang, D., Cotter, R.J.: Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry. Anal. Chem. 77, 1458–1466 (2005)

    Article  CAS  Google Scholar 

  23. Wang, D., Xu, W., McGrath, S.C., Patterson, C., Neckers, L., Cotter, R.J.: Direct identification of ubiquitination sites on ubiquitin-conjugated CHIP using MALDI mass spectrometry. J. Proteome Res. 4, 1554–1560 (2005)

    Article  CAS  Google Scholar 

  24. Hsu, J.L., Huang, S.Y., Chow, N.H., Chen, S.H.: Stable isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003)

    Article  CAS  Google Scholar 

  25. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009)

    Article  CAS  Google Scholar 

  26. Boersema, P.J., Foong, L.Y., Ding, V.M., Lemeer, S., Breukelen, B.V., Philp, R., Boekhorst, J., Snel, B., Hertog, J.D., Choo, A.B., Heck, A.J.: In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol. Cell. Proteomics 9(1), 84–99 (2010)

    Article  CAS  Google Scholar 

  27. Hsu, J.L., Huang, S.Y., Shiea, J.T., Huang, W.Y., Chen, S.H.: Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 4, 101–108 (2005)

    Article  CAS  Google Scholar 

  28. Shevchenko, A., Wilm, M., Vorm, O., Mann, M.: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996)

    Article  CAS  Google Scholar 

  29. Shevchenko, A., Tomas, H., Havli, J., Olsen, J.V., Mann, M.: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2007)

    Article  Google Scholar 

  30. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 12, 1154–1169 (2004)

    Article  Google Scholar 

  31. Chicooree, N., Griffiths, J. R., Connolly, Y., Tan, C-T., Malliri, A., Eyers, C. A, Smith, D. L.: A proteomic approach for the identification of proteotypic SUMOylated isopeptides in simple and complex systems. Rapid Commun. Mass Spectrom, 27, 127–134 (2013)

    Google Scholar 

  32. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

    Article  CAS  Google Scholar 

  33. Silva, J.C., Gorenstein, M.V., Li, G.Z., Vissers, J.P., Geromanos, S.J.: Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteom. 5, 144–156 (2006)

    Article  CAS  Google Scholar 

  34. Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., Bonner, R., Aebersold, R.: Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol. Cell. Proteom. doi:10.1074/mcp.O111.016717 (2012)

Download references

Acknowledgments

N.C. thanks the EPSRC for financial support. Y.C, C.-T.T, A.M., Y.L, J.G, and D.S. were funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Griffiths.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chicooree, N., Connolly, Y., Tan, CT. et al. Enhanced Detection of Ubiquitin Isopeptides Using Reductive Methylation. J. Am. Soc. Mass Spectrom. 24, 421–430 (2013). https://doi.org/10.1007/s13361-012-0538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0538-0

Key words

Navigation