Skip to main content
Log in

The Power of Accurate Energetics (or Thermochemistry: What is it Good for?)

  • Critical Insight
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The utility of measuring the energetics of ion-molecule reactions is discussed. After distinguishing between the terms of thermodynamics (macroscopic, equilibrium quantities) and energetics (microscopic and kinetically relevant quantities), the potential energy surfaces for ion-molecule reactions are reviewed and their implications discussed. Equations describing the kinetic energy dependence of ion-molecule reactions are introduced and the effects of entropy on reaction rates and branching ratios are discussed. Several case histories allow an exploration of the utility of accurate thermochemical information and probe how accurate such energetic information must be to be predictive. These case studies include decomposition of hydrated metal dications, the reaction of FeO+ with H2, and fragmentation of a small protonated peptide (GG). These illustrate a range of interesting systems for which accurate energetic information has been influential in understanding the observed reactivity. Comparisons with theory demonstrate that experimental information is still required for truly predictive capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Langevin, P.: Une Formule Fondamentale de Theorie Cinetique. Ann. Chim. Phys. Ser. 8(5), 245–288 (1905)

    Google Scholar 

  2. Gioumousis, G., Stevenson, D.P.: Reactions of gaseous molecule ions with gaseous molecules. V. Theory. J. Chem. Phys. 29, 294–299 (1958)

    Article  CAS  Google Scholar 

  3. Su, T., Bowers, M.T.: Theory of ion-polar molecule collisions comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene. J. Chem. Phys. 58, 3027–3037 (1973)

    Article  Google Scholar 

  4. Su, T., Bowers, M.T.: Ion-polar molecule collisions: the effect of ion size on ion-polar molecule rate constants: the parameterization of the average dipole orientation theory. Int. J. Mass Spectrom. Ion Phys. 12, 347–356 (1973)

    Article  CAS  Google Scholar 

  5. Su, T., Chesnavich, W.J.: Parameterization of the ion-polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 76, 5183–5185 (1982)

    Article  CAS  Google Scholar 

  6. Su, T.: Parameterization of kinetic energy dependences of ion-polar molecule collision rate constants by trajectory calculations. J. Chem. Phys. 100, 4703 (1994)

    Article  CAS  Google Scholar 

  7. Levine, R.D., Bernstein, R.B.: Post-threshold energy dependence of the cross section for endoergic processes: vibrational excitation and reactive scattering. J. Chem. Phys. 56, 2281–2287 (1972)

    Article  CAS  Google Scholar 

  8. Ervin, K.M., Armentrout, P.B.: Energy dependence, kinetic isotope effects, and thermochemistry of the nearly thermoneutral reactions of N+ + H2 → NH+ + H. J. Chem. Phys. 86, 2659–2673 (1987)

    Google Scholar 

  9. Armentrout, P.B., Beauchamp, J.L.: Cobalt carbene ion: reactions of Co+ with C2H4, cyclo-C3H6, and cyclo-C2H4O. J. Chem. Phys. 74, 2819–2826 (1981)

    Article  CAS  Google Scholar 

  10. Armentrout, P.B.: The kinetic energy dependence of ion-molecule reactions: guided ion beams and threshold measurements. Int. J. Mass Spectrom. Ion Process. 200, 219–241 (2000)

    Article  CAS  Google Scholar 

  11. Chesnavich, W.J., Bowers, M.T.: Theory of translationally driven reactions. J. Phys. Chem. 83, 900–905 (1979)

    Article  CAS  Google Scholar 

  12. Muntean, F., Armentrout, P.B.: Guided Ion beam study of collision-induced dissociation dynamics: integral and differental cross sections. J. Chem. Phys. 115, 1213–1228 (2001)

    Article  CAS  Google Scholar 

  13. Ervin, K.M., Armentrout, P.B.: Translational energy dependence of Ar+ + XY → ArX+ + Y (XY = H2, D2, HD) from thermal to 30 eV cm. J. Chem. Phys. 83, 166–189 (1985)

    Google Scholar 

  14. Schultz, R.H., Crellin, K.C., Armentrout, P.B.: Sequential bond energies of Fe(CO) x + (x = 1–5): systematic effects on collision-induced dissociation measurements. J. Am. Chem. Soc. 113, 8590–8601 (1991)

    Article  CAS  Google Scholar 

  15. Loh, S.K., Hales, D.A., Lian, L., Armentrout, P.B.: Collision-induced dissociation of Fe n + (n = 2–10) with Xe: ionic and neutral iron cluster binding energies. J. Chem. Phys. 90, 5466–5485 (1989)

    Article  CAS  Google Scholar 

  16. Khan, F.A., Clemmer, D.E., Schultz, R.H., Armentrout, P.B.: Sequential bond energies of Cr(CO) x +, x = 1–6. J. Phys. Chem. 97, 7978–7987 (1993)

    Article  CAS  Google Scholar 

  17. Rodgers, M.T., Ervin, K.M., Armentrout, P.B.: Statistical modeling of collision-induced dissociation thresholds. J. Chem. Phys. 106, 4499–4508 (1997)

    Article  CAS  Google Scholar 

  18. Armentrout, P.B., Ervin, K.M., Rodgers, M.T.: Statistical rate theory and kinetic energy-resolved ion chemistry—theory and applications. J. Phys. Chem. A 112, 10071–10085 (2008)

    Article  CAS  Google Scholar 

  19. Rodgers, M.T., Armentrout, P.B.: Statistical modeling of competitive threshold collision-induced dissociation. J. Chem. Phys. 109, 1787–1800 (1998)

    Article  CAS  Google Scholar 

  20. Krückeberg, S., Dietrich, G., Lützenkirchen, K., Schweikhard, L., Walther, C., Ziegler, J.: Multiple-collision induced dissociation of trapped silver clusters Ag n + (2 ≤ n ≤ 25). J. Chem. Phys. 110, 7216–7228 (1999)

    Article  Google Scholar 

  21. Hales, D.A., Lian, L., Armentrout, P.B.: Collision-Induced Dissociation of Nbn + (n = 2–11): Bond Energies and Dissociation Pathways. Int. J. Mass Spectrom. Ion Process. 102, 269–301 (1990)

    Article  CAS  Google Scholar 

  22. Gilbert, R.G., Smith, S.C.: Theory of Unimolecular and Recombination Reactions. Blackwell Scientific, London (1990)

    Google Scholar 

  23. Robinson, P.J., Holbrook, K.A.: Unimolecular Reactions. Wiley Interscience, New York (1972)

    Google Scholar 

  24. Armentrout, P.B.: Statistical modeling of sequential collision-induced dissociation thresholds. J. Chem. Phys. 126, 1–9 (2007)

    Google Scholar 

  25. Armentrout, P.B., Heaton, A.L.: Thermodynamics and mechanisms of protonated diglycine decomposition: a guided ion beam study. J. Am. Soc. Mass Spectrom. 23, 632–643 (2012)

    Article  CAS  Google Scholar 

  26. Muntean, F., Armentrout, P.B.: Modeling kinetic shifts for tight transition states in threshold collision-induced dissociation. Case study: phenol cation. J. Phys. Chem. B 106, 8117–8124 (2002)

    Article  CAS  Google Scholar 

  27. Muntean, F., Heumann, L., Armentrout, P.B.: Modeling kinetic shifts in threshold collision-induced dissociation. Case study: dichlorobenzene cation dissociation. J. Chem. Phys. 116, 5593–5602 (2002)

    Article  CAS  Google Scholar 

  28. Muntean, F., Armentrout, P.B.: Modeling kinetic shifts and competition in threshold collision-induced dissociation. Case study: N-butylbenzene cation dissociation. J. Phys. Chem. A 107, 7413–7422 (2003)

    Article  CAS  Google Scholar 

  29. Narancic, S., Bach, A., Chen, P.: Simple fitting of energy-resolved reactive cross sections in threshold collision-induced dissociation (T-CID) experiments. J. Phys. Chem. A 111, 7006–7013 (2007)

    Article  CAS  Google Scholar 

  30. Jia, B., Angel, L.A., Ervin, K.M.: Threshold collision-induced dissociation of hydrogen-bonded dimers of carboxylic acids. J. Phys. Chem. A 112, 1773–1782 (2008)

    Article  CAS  Google Scholar 

  31. Armentrout, P.B., Heaton, A.L., Ye, S.J.: Thermodynamics and mechanisms for decomposition of protonated glycine and its protonated dimer. J. Phys. Chem. A 115, 11144–11155 (2011)

    Article  CAS  Google Scholar 

  32. Blades, A.T., Jayaweera, P., Ikonomou, M.G., Kebarle, P.: Ion-molecule clusters involving doubly charged metal ions (M2+). Int. J. Mass Spectrom. Ion Process. 102, 251–267 (1990)

    Article  CAS  Google Scholar 

  33. Shvartsburg, A.A., Siu, K.W.M.: Is there a minimum size for aqueous doubly charged metal cations? J. Am. Chem. Soc. 123, 10071–10075 (2001)

    Article  CAS  Google Scholar 

  34. Cooper, T.E., Carl, D.R., Armentrout, P.B.: Hydration energies of zinc (II): threshold collision-induced dissociation experiments and theoretical studies. J. Phys. Chem. A 113, 13727–13741 (2009)

    Article  CAS  Google Scholar 

  35. Cooper, T.E., Armentrout, P.B.: An experimental and theoretical investigation of the charge separation energies of hydrated zinc (II): redefinition of the critical size. J. Phys. Chem. A 113, 13742–13751 (2009)

    Article  CAS  Google Scholar 

  36. Armentrout, P.B., Simons, J.: Understanding heterolytic bond cleavage. J. Am. Chem. Soc. 114, 8627–8633 (1992)

    Article  CAS  Google Scholar 

  37. Loh, S.K., Fisher, E.R., Lian, L., Schultz, R.H., Armentrout, P.B.: State specific reactions of Fe+(6D, 4F) with O2 and cyclo-C2H4O: Do 0(Fe+-O) and effects of collisional relaxation. J. Phys. Chem. 93, 3159–3167 (1989)

    Article  CAS  Google Scholar 

  38. Fisher, E.R., Elkind, J.L., Clemmer, D.E., Georgiadis, R., Loh, S.K., Aristov, N., Sunderlin, L.S., Armentrout, P.B.: Reactions of fourth period metal ions (Ca+ – Zn+) with O2: metal oxide ion bond energies. J. Chem. Phys. 93, 2676–2691 (1990)

    Article  CAS  Google Scholar 

  39. Metz, R.B., Nicolas, C., Ahmed, M., Leone, S.R.: Direct determination of the ionization energies of FeO and CuO with VUV radiation. J. Chem. Phys. 123, 114313 (2005)

    Article  Google Scholar 

  40. Chase, J.M.W., Davies, C.A., Downey, J.J.R., Frurip, D.J., McDonald, R.A., Syverud, A.N.: JANAF thermodynamic tables. J. Phys. Chem. Ref. Data 14(Suppl 1), (1985)

  41. Schröder, D., Fiedler, A., Ryan, M.F., Schwarz, H.: Surprisingly low reactivity of bare iron monoxide ion (FeO+) in its spin-allowed, highly exothermic reaction with molecular hydrogen to generate iron(1+) and water. J. Phys. Chem. 98, 68–70 (1994)

    Article  Google Scholar 

  42. Clemmer, D.E., Chen, Y.-M., Khan, F.A., Armentrout, P.B.: State-specific reactions of Fe+(a6D, a4F) with D2O and Reactions of FeO+ with D2. J. Phys. Chem. 98, 6522–6529 (1994)

    Article  CAS  Google Scholar 

  43. Baranov, V., Javahery, G., Hopkinson, A.C., Bohme, D.K.: Intrinsic coordination properties of iron in FeO+: kinetics at 294 ± 3 K for gas-phase reactions of the ground states of Fe+ and FeO+ with inorganic ligands containing hydrogen, nitrogen, and oxygen. J. Am. Chem. Soc. 117, 12801–12809 (1995)

    Article  CAS  Google Scholar 

  44. Schröder, D., Schwarz, H., Clemmer, D.E., Chen, Y., Armentrout, P.B., Baranov, V.I., Bohme, D.K.: Activation of hydrogen and methane by thermalized FeO+ in the gas phase as studied by multiple mass spectrometric techniques. Int. J. Mass Spectrom. Ion Process. 161, 175–191 (1997)

    Article  Google Scholar 

  45. Danovich, D., Shaik, S.: Spin-Orbit Coupling in the oxidative activation of H–H by FeO+. Selection rules and reactivity effects. J. Am. Chem. Soc. 119, 1773–1786 (1997)

    Article  CAS  Google Scholar 

  46. Elkind, J.L., Armentrout, P.B.: Effect of kinetic and electronic energy on the reactions of Fe+ with H2, HD, and D2: state-specific cross sections for Fe+(6D) and Fe+(4F). J. Phys. Chem. 90, 5736–5745 (1986)

    Article  CAS  Google Scholar 

  47. Filatov, M., Shaik, S.: Theoretical investigation of two-state-reactivity pathways of H–H activation by FeO+: addition-elimination, “Rebound”, and oxene-insertion mechanisms. J. Phys. Chem. A 102, 3835–3846 (1998)

    Google Scholar 

  48. Irigoras, A., Fowler, J.E., Ugalde, J.M.: On the reactivity of Cr+(6S,4D), Mn+(7S,5S), and Fe+(6D,4F): reaction of Cr+, Mn+ and Fe+ with water. J. Am. Chem. Soc. 121, 8549–8558 (1999)

    Article  CAS  Google Scholar 

  49. Schröder, D., Shaik, S., Schwarz, H.: Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145 (2000)

    Article  Google Scholar 

  50. Bohme, D.K., Schwarz, H.: Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005)

    Article  Google Scholar 

  51. Armentrout, P.B., Heaton, A.L.: Thermodynamics and mechanisms of protonated diglycine decomposition: a computational study. J. Am. Soc. Mass Spectrom. 23, 621–631 (2012)

    Article  CAS  Google Scholar 

  52. Klassen, J.S., Kebarle, P.: Collision-induced dissociation threshold energies of protonated glycine, glycinamide, and some related small peptides and peptide amino amides. J. Am. Chem. Soc. 119, 6552–6563 (1997)

    Article  CAS  Google Scholar 

  53. Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984)

    Article  CAS  Google Scholar 

  54. Biemann, K.: Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16, 99–111 (1988)

    Article  CAS  Google Scholar 

  55. Paizs, B., Csonka, I., Lendvay, G., Suhai, S.: Proton mobility in protonated glycylglycine and N-formylglycylglycinamide: a combined quantum chemical and RKKM study. Rapid Commun. Mass Spectrom. 15, 637–650 (2001)

    Article  CAS  Google Scholar 

  56. Paizs, B., Suhai, S.: Theoretical study of the main fragmentation pathways for protonated glycylglycine. Rapid Commun. Mass Spectrom. 15, 651–663 (2001)

    Article  CAS  Google Scholar 

  57. Balta, B., Aviyente, V., Lifshitz, C.: Elimination of water from the carboxyl group of GlyGlyH+ J. Am. Soc. Mass Spectrom. 14, 1192–1203 (2003)

    Article  CAS  Google Scholar 

  58. Armentrout, P.B., Rodgers, M.T.: An absolute sodium cation affinity scale: threshold collision-induced dissociation experiments and ab initio theory. J. Phys. Chem. A 104, 2238–2247 (2000)

    Article  CAS  Google Scholar 

  59. Rodgers, M.T., Armentrout, P.B.: A critical evaluation of the experimental and theoretical determination of lithium cation affinities. Int. J. Mass Spectrom. 267, 167–182 (2007)

    Article  CAS  Google Scholar 

  60. Armentrout, P.B., Clark, A.A.: The simplest b2 + ion: determining Its structure from its energetics by a direct comparison of the threshold collision-induced dissociation of protonated oxazolone and diketopiperazine. Int. J. Mass Spectrom. 316/318, 182–191 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

While ion chemistry may occur in a vacuum, research does not. I thank my students for their many contributions to the work here and for teaching me many new things over the years. Students contributing to the examples illustrated here include T. E. Hofstetter (ne Cooper), D. E. Clemmer, Y.-M. Chen, F. A. Khan, and A. L. Heaton. The National Science Foundation (CHE-1049580) and Department of Energy, Office of Basic Energy Sciences have provided financial support for our work. I thank Carol Robinson for the opportunity to pontificate here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Armentrout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armentrout, P.B. The Power of Accurate Energetics (or Thermochemistry: What is it Good for?). J. Am. Soc. Mass Spectrom. 24, 173–185 (2013). https://doi.org/10.1007/s13361-012-0515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0515-7

Key words

Navigation