Advertisement

Regurgitated ammonoid remains from the latest Devonian of Morocco

  • Christian KlugEmail author
  • Lothar H. Vallon
Regular Research Article
  • 37 Downloads

Abstract

Accumulations of ammonoid shell fragments have been recovered from the Hangenberg Black Shale (latest Devonian) of the southern Maïder (eastern Anti-Atlas, Morocco). They are here interpreted as regurgitalites and ascribed tentatively to gnathostomes as possible tracemakers. The recognition of fossil regurgitations is reviewed and a checklist provided.

Keywords

Ammonoidea Mass extinctions Hangenberg event Chondichthyes Food web Digestichnia 

Notes

Acknowledgements

We greatly appreciate the support by the Swiss National Science Foundation (Project Numbers 200020_132870, 200020_149120, 200021_156105). We thank the Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement (Direction du Développement Minier, Division du Patrimoine, Rabat, Morocco) for working and sample export permits. We acknowledge the thorough reviews of Kenneth De Baets (Erlangen) and an anonymous reviewer that helped to improve the current paper.

References

  1. Abel, O. (1935). Vorzeitliche Lebensspuren. Jena: Fischer.Google Scholar
  2. Aldridge, R. J., Gabbott, S. E., Siveter, L. J., & Theron, J. N. (2006). Bromalites from the Soom Shale Lagerstätte (Upper Ordovician) of South Africa: Palaeoecological and palaeobiological implications. Palaeontology, 49, 857–871.CrossRefGoogle Scholar
  3. Algeo, T. J., Berner, R. A., Maynard, J. B., & Scheckler, S. E. (1995). Late Devonian oceanic anoxic events and biotic crises: ‘rooted’ in the evolution of vascular plants. GSA Today, 5, 63–66.Google Scholar
  4. Algeo, T. J., & Scheckler, S. E. (1998). Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London, (B): Biological Sciences, 353, 113–130.CrossRefGoogle Scholar
  5. Algeo, T. J., Scheckler, S. E., & Maynard, J. B. (2001). Effects of Middle to Late Devonian spread of vascular land plants and weathering regimes. In P. G. Gensel & D. Edwards (Eds.), Plants invade the land (pp. 213–237). New York: Columbia University Press.Google Scholar
  6. Andrews, P. (1990). Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-Sub-Mendip, Somerset, UK. London: University of Chicago Press.Google Scholar
  7. Argyriou, T., Clauss, M., Maxwell, E. E., Furrer, H., & Sánchez-Villagra, M. R. (2016). Exceptional preservation reveals gastrointestinal anatomy and evolution in early actinopterygian fishes. Scientific Reports, 6, 18758.CrossRefGoogle Scholar
  8. Becker, R. T., Bockwinkel, J., Ebbighausen, V., & House, M. R. (2000). Jebel Mrakib, Anti-Atlas (Morocco), a potential Upper Famennian substage boundary stratotype section. Notes et Mémoires, Service des Mines et de la carte géologique du Maroc, 399, 75–86.Google Scholar
  9. Becker, R. T., Hartenfels, S., Klug, C., Aboussalam, Z. S., & Afhüppe, L. (2018). The cephalopod-rich Famennian and Tournaisian of the Aguelmous Syncline (southern Maïder). Münstersche Forschungsberichte zur Geologie und Paläontologie, 110(1), 273–306.Google Scholar
  10. Becker, R. T., House, M. R., Bockwinkel, J., Ebbighausen, V., & Aboussalam, Z. S. (2002). Famennian ammonoid zones of the eastern Anti-Atlas (southern Morocco). Münstersche Forschungen zur Geologie und Paläontologie, 93, 159–205.Google Scholar
  11. Becker, R. T., Kaiser, S. I., & Aretz, M. (2016). Review of chrono-, litho- and biostratigraphy across the global Hangenberg Crisis and Devonian-Carboniferous boundary. Geological Society of London, Special Publications, 423, 355–386.  https://doi.org/10.1144/SP423.10.CrossRefGoogle Scholar
  12. Bergström, J., Briggs, D. E. G., Dahl, E., Rolfe, W. D. I., & Stürmer, W. (1987). Nahecaris stuertzi, a phyllocarid crustacean from the Lower Devonian Hunsrück Slate. Paläontologische Zeitschrift, 61, 273–298.CrossRefGoogle Scholar
  13. Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., et al. (2006). Names for trace fossils: A uniform approach. Lethaia, 39, 265–286.CrossRefGoogle Scholar
  14. Bochenski, Z. M., Huhtala, K., Jussila, P., Pulliainen, E., Tornberg, R., & Tunkkari, P. S. (1998). Damage to bird bones in pellets of Gyrfalcon Falco rusticolus. Journal of Archaeological Science, 25, 425–433.CrossRefGoogle Scholar
  15. Bochenski, Z. M., Tomek, T., Boev, Z., & Mitev, I. (1993). Patterns of birdbone fragmentation in pellets of the tawny owl (Strix aluco) and the eagle owl (Bubo bubo) and their taphonomic implications. Acta Zoologica Cracoviensia, 36, 313–328.Google Scholar
  16. Brett, C. E., & Walker, S. E. (2002). Predators and predation in Paleozoic marine environments. Paleontological Society Papers, 8, 93–118.Google Scholar
  17. Burrow, C., & Turner, S. (2010). Reassessment of “Protodus scoticus” from the Early Devonian of Scotland. In K. Elliot, J. G. Maisey, X. Yu, & D. Miao (Eds.), Morphology, phylogeny and palaeobiogeography of fossil fishes (pp. 123–144). Munich: Pfeil.Google Scholar
  18. Chin, K., Tokaryk, T. T., Erickson, G. M., & Calk, L. C. (1998). A king-sized theropod coprolite. Nature, 393, 680–682.CrossRefGoogle Scholar
  19. De Baets, K., & Littlewood, D. T. J. (2015). The importance of fossils in understanding the evolution of parasites and their vectors. Advances in Parasitology, 90, 1–51.CrossRefGoogle Scholar
  20. de Queiroz, A., & Rodríguez-Robles, J. A. (2006). Historical contingency and animal diets: The origins of egg eating in snakes. American Naturalist, 167, 684–694.CrossRefGoogle Scholar
  21. Dentzien-Dias, P. C., Poinar, G., de Figueiredo, A. E. Q., Pacheco, A. C. L., Horn, B. L. D., & Schultz, C. L. (2013). Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS ONE, 8(1), e55007.  https://doi.org/10.1371/journal.pone.0055007.CrossRefGoogle Scholar
  22. Dietl, G., & Schweigert, G. (2011). Im Reich der Meerengel – Fossilien aus dem Nusplinger Plattenkalk (2. Auf.). Munich: Pfeil.Google Scholar
  23. Dodson, P., & Wexlar, D. (1979). Taphonomic investigations of owl pellets. Paleobiology, 5, 275–284.CrossRefGoogle Scholar
  24. Doyle, P., & Macdonald, D. I. M. (1993). Belemnite battlefields. Lethaia, 26, 65–80.CrossRefGoogle Scholar
  25. Duke, G. E., Evanson, O. A., & Jegers, A. (1976). Meal to pellet intervals in 14 species of captive raptors. Comparative Biochemistry and Physiology, 53A, 1–6.Google Scholar
  26. Duke, G. E., Jegers, A. A., Loff, G., & Evanson, O. A. (1975). Gastric digestion in some raptors. Comparative Biochemistry and Physiology, 50A, 649–656.CrossRefGoogle Scholar
  27. Fenton, C. L., & Fenton, M. A. (1958). The fossil book (p. 482). New York: Doubleday.Google Scholar
  28. Fisher, D. C. (1981). Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth. Paleobiology, 7, 262–275.CrossRefGoogle Scholar
  29. Frey, L., Rücklin, M., Korn, D., & Klug, C. (2018). Late Devonian and Early Carboniferous alpha diversity, ecospace occupation, vertebrate assemblages and bio-events of southeastern Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 496, 1–17.CrossRefGoogle Scholar
  30. Gilmore, B. (1992). Scroll coprolites from the Silurian of Ireland and the feeding of early vertebrates. Palaeontology, 35, 319–333.Google Scholar
  31. Grimm, R., & Whitehouse, W. M. (1963). Pellet formation in a Great Horned Owl: A roentgenographic study. The Auk, 80, 301–306.  https://doi.org/10.2307/4082889.CrossRefGoogle Scholar
  32. Haq, B. U., & Schutter, S. R. (2008). A chronology of Paleozoic sealevel changes. Science, 322, 64–68.CrossRefGoogle Scholar
  33. Hassan, M. A., Westermann, G. E. G., Hewitt, R. A., & Dokainish, M. A. (2002). Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology, 28, 113–126.  https://doi.org/10.1666/0094-8373(2002)028%3c0113:feaosa%3e2.0.co;2.CrossRefGoogle Scholar
  34. Hewitt, R. A. (1996). Architecture and strength of the ammonoid shell. In N. H. Landman, Tanabe, K., & Davis, R. A. (Eds.), Ammonoid paleobiology. Topics in Geobiology, 13, 297–339.Google Scholar
  35. Hewitt, R. A., & Westermann, G. E. G. (1986). Function of complexly fluted septa in ammonoid shells. I. Mechanical principles and functional models. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 172, 47–69.Google Scholar
  36. Hewitt, R. A., & Westermann, G. E. G. (1987). Function of complexly fluted septa in ammonoid shells II. Septal evolution and conclusions. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 174, 135–169.Google Scholar
  37. Hockett, B. S. (1996). Corroded, thinned and polished bones created by golden eagles (Aquila chrysaetos): Taphonomic implications for archaeological interpretations. Journal of Archaeological Science, 23, 587–591.CrossRefGoogle Scholar
  38. Hunt, A. P. (1992). Late Pennsylvanian coprolites from the Kinney Brick Quarry, central New Mexico, with notes on the classification und utility of coprolites. New Mexico Bureau of Mines and Mineral Resources, Bulletin, 138, 221–229.Google Scholar
  39. Hunt, A. P., Milàn, J., Lucas, S. G., & Spielmann, J. A. (Eds., 2012). Vertebrate coprolites. New Mexico Museum of Natural History and Science, Bulletin, 57, 1–387.Google Scholar
  40. Jablonski, D. (2001). Lessons from the past: evolutionary impacts and mass extinctions. Proceedings of the National Academy of Science, USA, 98, 5393–5398.CrossRefGoogle Scholar
  41. Janicke, V. (1970). Lumbricaria – ein Cephalopoden-Koprolith. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 3, 50–60.Google Scholar
  42. Kaiser, S. I., Aretz, M., & Becker, R. T. (2015). The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction. Geological Society of London, Special Publications, 423, 51.  https://doi.org/10.1144/SP423.9.CrossRefGoogle Scholar
  43. Kaiser, S. I., Becker, R. T., Spalletta, C., & Steuber, T. (2009). High-resolution conodont stratigraphy, biofacies, and extinctions around the Hangenberg Event in pelagic successions from Austria, Italy, and France. Palaeontographica Americana, 63, 97–139.Google Scholar
  44. Kaiser, S. I., Becker, R. T., Steuber, T., & Aboussalam, Z. S. (2011). Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian-Carboniferous boundary in the eastern Anti-Atlas (SE Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 340–364.CrossRefGoogle Scholar
  45. Kaiser, S. I., Steuber, T., & Becker, R. T., (2008). Environmental change during the Late Famennian and Early Tournaisian (Late Devonian–Early Carboniferous)—implications from stable isotopes and conodont biofacies in southern Europe. In M. Aretz, H.-G. Herbig, & I. D. Somerville (Eds.) Carboniferous platforms and Basins. Geological Journal, 43, 241–260.Google Scholar
  46. Kaiser, S. I., Steuber, T., Becker, R. T., & Joachimski, M. M. (2006). Geochemical evidence for major environmental change at the Devonian-Carboniferous boundary in the Carnic Alps and the Rhenish Massif. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 146–160.CrossRefGoogle Scholar
  47. Kaufmann, B. (1998). Facies, stratigraphy and diagenesis of Middle Devonian reef- and mud-mounds in the Mader (eastern Anti-Atlas, Morocco). Acta Geologica Polonica, 48, 43–106.Google Scholar
  48. Keeling, L. K., & Gonyou, H. W. (Eds.). (2001). Social behaviour in farm animals. New York: CABI Publishing.Google Scholar
  49. Keupp, H. (2000). Ammoniten – paläobiologische Erfolgsspiralen. Stuttgart: Jan Thorbecke Verlag.Google Scholar
  50. Keupp, H. (2012). Atlas zur Paläopathologie der Cephalopoden. Berliner Paläobiologische Abhandlungen, 12, 1–392.Google Scholar
  51. Klompmaker, A. A., Waljaard, N. A., & Fraaije, R. H. B. (2009). Ventral bite marks in Mesozoic ammonoids. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 245–257.CrossRefGoogle Scholar
  52. Klug, C., Frey, L., Korn, D., Jattiot, R., & Rücklin, M. (2016). The oldest Gondwanan cephalopod mandibles (Hangenberg Black Shale, Late Devonian) and the mid-Palaeozoic rise of jaws. Palaeontology, 59, 611–629.CrossRefGoogle Scholar
  53. Klug, C. (2002). Quantitative stratigraphy and taxonomy of late Emsian and Eifelian ammonoids of the eastern Anti-Atlas (Morocco). Courier Forschungsinstitut Senckenberg, 238, 1–109.Google Scholar
  54. Klug, C., Frey, L., Pohle, A., De Baets, K., & Korn, D. (2017). Palaeozoic evolution of animal mouthparts. Bulletin of Geosciences, 92, 511–524.CrossRefGoogle Scholar
  55. Klug, C., Fuchs, D., Schweigert, G., Röper, M., & Tischlinger, H. (2015). New anatomical information on arms and fins from exceptionally preserved Plesioteuthis (Coleoidea) from the Late Jurassic of Germany. Swiss Journal of Palaeontology, 134, 245–255.  https://doi.org/10.1007/s13358-015-0093-y.CrossRefGoogle Scholar
  56. Klug, C., Kröger, B., Kiessling, W., Mullins, G. L., Servais, T., Frýda, J., et al. (2010). The Devonian nekton revolution. Lethaia, 43, 465–477.CrossRefGoogle Scholar
  57. Klug, C., Kröger, B., Rücklin, M., Korn, D., Schemm-Gregory, M., De Baets, K., et al. (2008). Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the Ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontographica A, 283, 1–94.CrossRefGoogle Scholar
  58. Klug, C., & Lehmann, J. (2015). Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. In C. Klug, D. Korn, K. Baets, I. Kruta, & R. H. Mapes (Eds.), Ammonoid paleobiology, volume I: from anatomy to ecology. Topics in geobiology (Vol. 43, pp. 539–552). Dordrecht: Springer.Google Scholar
  59. Korn, D. (1999). Famennian ammonoid stratigraphy of the Ma´der and Tafilalt (eastern Anti-Atlas, Morocco). Abhandlungen der Geologischen Bundesanstalt, 54, 147–179.Google Scholar
  60. Korn, D., & Klug, C. (2015). Paleozoic ammonoid stratigraphy. In C. Klug, D. Korn, K. De Baets, I. Kruta, & R. H. Mapes (Eds.), Ammonoid paleobiology, volume I: from anatomy to ecology. topics in geobiology (Vol. 43, pp. 299–328). Dordrecht: Springer.Google Scholar
  61. Kruta, I., Landman, N., Rouget, I., Cecca, F., & Tafforeau, P. (2011). The role of ammonites in the mesozoic marine food web revealed by jaw preservation. Science, 331, 70–72.CrossRefGoogle Scholar
  62. Lehmann, U. (1983). Jaws, Radula and Crop of Arnioceras (Ammonoidea). Palaeontology, 14, 338–341.Google Scholar
  63. Lehmann, U., & Weitschat, W. (1973). Zur Anatomie und Ökologie von Ammoniten: Funde von Kropf und Kiemen. Paläontologische Zeitschrift, 47, 69–76.CrossRefGoogle Scholar
  64. Lemanis, R., Zachow, S., & Hoffmann, R. (2016). Comparative cephalopod shell strength and the role of septum morphology on stress distribution. PeerJ, 4(e2434), 1–20.  https://doi.org/10.7717/peerj.2434.CrossRefGoogle Scholar
  65. MacLeod, N. (1998). Impacts and marine invertebrate extinctions. Geological Society of London, Special Publications, 140, 217–246.CrossRefGoogle Scholar
  66. MacLeod, N. (2003). The causes of Phanerozoic extinctions. In L. J. Rothschild & A. Lister (Eds.), Evolution on planet earth: The impact of the physical environment (pp. 253–277). Amsterdam: Academic Press.CrossRefGoogle Scholar
  67. MacLeod, N. (2014). The geological extinction record: History, data, biases, and testing. Geological Society of America, Special Paper, 505, 1–28.  https://doi.org/10.1130/2014.2505(01).CrossRefGoogle Scholar
  68. Mapes, R., & Chaffin, D. (2003). Predation on cephalopods. In P. Kelley, M. Kowalewski, & T. Hansen (Eds.), Predator–prey interactions in the fossil record (pp. 177–213). New York: Springer.CrossRefGoogle Scholar
  69. Martill, D. M. (1990). Predation on Kosmoceras by semionotid fish in the middle Jurassic lower Oxford clay of England. Palaeontology, 33, 739–742.Google Scholar
  70. Massa, D., Combaz, A., & Manderscheid, G. (1965). Observations sur les séries siluro-dévoniennes des confins algéro-marocains du Sud. Notes et Mémoires, Compagnie Française des Pétroles, 8, 1–188.Google Scholar
  71. McGhee, G. R., Jr. (2014). When the invasion of land failed. The legacy of the Devonian ex- tinctions. New York: Columbia University Press.Google Scholar
  72. McGhee, G. R., Jr., Clapham, M. E., Sheehan, P. M., Bottjer, D. J., & Droser, M. L. (2013). A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 260–270.CrossRefGoogle Scholar
  73. Mehl, J. (1978). Ein Koprolith mit Ammoniten-Aptychen aus dem Solnhofer Plattenkalk. Jahresberichte der Wetterauischen Gesellschaft fuer die gesamte Naturkunde, 129(130), 75–93.Google Scholar
  74. Milàn, J. (2012). Crocodylian scatology—A look into morphology, internal architecture, inter- and intraspecific variation and prey remains in extant crocodylian feces. New Mexico Museum of Natural History and Science, Bulletin, 57, 65–71.Google Scholar
  75. Milàn, J., Rasmussen, B. W., & Lynnerup, N. (2012). A coprolite in the MDCT-Scanner – Internal Architecture and bone contents revealed. New Mexico Museum of Natural History and Science, Bulletin, 57, 99–102.Google Scholar
  76. Mund, M. J., & Miller, G. D. (1995). Diet of the south polar skua Catharacta maccormicki at Cape Bird, Ross Island, Antarctica. Polar Biology, 15, 453–455.CrossRefGoogle Scholar
  77. Pollard, J. E. (1990). Evidence for diet. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology: a synthesis (pp. 362–367). Oxford: Blackwell.Google Scholar
  78. Qvarnström, M., Niedźwiedzki, G., & Žigaitė, Ž. (2016). Vertebrate coprolites (fossil faeces): An underexplored Konservat-Lagerstätte. Earth-Science Reviews, 162, 44–57.CrossRefGoogle Scholar
  79. Richter, A. E. (2009). Ammoniten-Gehäuse mit Bissspuren. Berliner Paläobiologische Abhandlungen, 10, 297–305.Google Scholar
  80. Ritterbush, K. A., Hoffmann, R., Lukeneder, A., & De Baets, K. (2014). Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology, 292, 229–241.CrossRefGoogle Scholar
  81. Röper, M. (2005). East Bavarian Plattenkalk—different types of upper Kimmeridgian to lower Tithonian Plattenkalk deposits and facies. Zitteliana, 26, 57–70.Google Scholar
  82. Rust, J., Bergmann, A., Bartels, C., Schoenemann, B., Sedlmeier, S., & Kühl, G. (2016). The Hunsrück biota: A unique window into the ecology of Lower Devonian arthropods. Arthropod Structure & Development, 45, 140–151.CrossRefGoogle Scholar
  83. Sallan, L. C., & Coates, M. I. (2010). End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences, 107, 10131–10135.CrossRefGoogle Scholar
  84. Sallan, L. C., Kammer, T. W., Ausich, W. I., & Cook, L. A. (2011). Persistent predator-prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences, 108(20), 8335–8338.CrossRefGoogle Scholar
  85. Sanz, J. L., Chiappe, L. M., Fernandez-Jalvo, Y., Ortega, F., Sanchez-Chillon, B., Poyato-Ariza, F. J., et al. (2001). An early Cretaceous pellet. Nature, 409, 998–1000.CrossRefGoogle Scholar
  86. Schweigert, G. (1999). Erhaltung und Einbettung von Belemniten im Nusplinger Plattenkalk (Ober-Kimmeridgium, Beckeri-Zone, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde, B, 273, 1–35.Google Scholar
  87. Schweigert, G. (2018). Miscellanea aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb). 19. Zwei Fallbeispiele besonderer Belemnitenerhaltung. Zwei Fallbeispiele besonderer Belemnitenerhaltung. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins, N.F., 100, 509–516.CrossRefGoogle Scholar
  88. Schweigert, G., & Dietl, G. (1999). Zur Erhaltung und Einbettung von Ammoniten im Nusplinger Plattenkalk (Oberjura, Südwestdeutschland). Stuttgarter Beiträge zur Naturkunde, B, 272, 1–31.Google Scholar
  89. Scotese, C. R. (1997). Paleogeographic atlas, PALEOMAP Progress Report 90–0497. Department of Geology. Arlington: University of Texas.Google Scholar
  90. Seilacher, A. (1998). Mosasaurs, limpets or diagenesis: How Placenticeras shells got punctured. Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe, 1, 93–102.Google Scholar
  91. Tanabe, K., Misaki, A., Landman, N. H., & Kato, T. (2013). The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia, 46, 399–408.CrossRefGoogle Scholar
  92. Thies, D., & Hauff, R. B. (2012). A Speiballen from the Lower Jurassic Posidonia Shale of South Germany. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 267, 117–124.CrossRefGoogle Scholar
  93. Tsujita, C. J., & Westermann, G. E. G. (2001). Were limpets or mosasaurs responsible for the perforations in the ammonite Placenticeras? Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 245–270.CrossRefGoogle Scholar
  94. Vallon, L. H. (2012). Digestichnias (Vialov, 1972)—an almost forgotten ethological class for trace fossils. New Mexico Museum of Natural History and Science, Bulletin, 57, 131–135.Google Scholar
  95. Vullo, R. (2011). Direct evidence of hybodont shark predation on Late Jurassic ammonites. Naturwissenschaften, 98, 545–549.CrossRefGoogle Scholar
  96. Wendt, J. (1985). Disintegration of the continental margin of northwestern Gondwana: Late Devonian of the eastern Anti-Atlas (Morocco). Geology, 13, 815–818.CrossRefGoogle Scholar
  97. Wendt, J. (1988). Facies pattern and paleogeography of the Middle and Late Devonian in the eastern Anti-Atlas (Morocco). In N. J. McMillan, A. F. Embry, & D. J. Glass (Eds.), Devonian of the world. Canadian Society of Petroleum Geologists, Memoires, 14(1), 467–480.Google Scholar
  98. Westermann, G. E. G. (1973). Strength of concave septa and depth limits of fossil cephalopods. Lethaia, 6, 383–403.CrossRefGoogle Scholar
  99. Westermann, G. E. G. (1985). Exploding Nautilus camerae does not test septal strength index. Lethaia, 18, 348.  https://doi.org/10.1111/j.1502-3931.1985.tb00714.x.CrossRefGoogle Scholar
  100. Westermann, G. E. G., & Ward, P. (1980). Septum morphology and bathymetry in cephalopods. Paleobiology, 6, 48–50.  https://doi.org/10.1017/s0094837300012495.CrossRefGoogle Scholar
  101. Whitenack, L. B., Simkins, D. C., Jr., & Motta, P. J. (2011). Biology meets engineering: The structural mechanics of fossil and extant shark teeth. Journal of Morphology, 272, 169–179.CrossRefGoogle Scholar
  102. Wings, O., & Sander, P. M. (2007). No gastric mill in sauropod dinosaurs: New evidence from analysis of gastrolith mass and function in ostriches. Proceedings of the Royal Society, B, 274, 635–640.  https://doi.org/10.1098/rspb.2006.3763.CrossRefGoogle Scholar
  103. Zangerl, R., & Richardson, E. S. (1963). The paleoecological history of two Pennsylvanian black shales. Fieldiana Geology, Memoirs, 4, 1–352.Google Scholar
  104. Zatoń, M., Villier, L., & Salamon, M. A. (2007). Signs of predation in the Middle Jurassic of south-central Poland: Evidence from echinoderm taphonomy. Lethaia, 40, 139–151.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2018

Authors and Affiliations

  1. 1.Paläontologisches Institut und MuseumZurichSwitzerland
  2. 2.Geomuseum Faxe (Østsjællands Museum)FaxeDenmark

Personalised recommendations