Swiss Journal of Palaeontology

, Volume 135, Issue 2, pp 295–314 | Cite as

Triassic chirotheriid footprints from the Swiss Alps: ichnotaxonomy and depositional environment (Cantons Wallis & Glarus)

  • Hendrik KleinEmail author
  • Michael C. Wizevich
  • Basil Thüring
  • Daniel Marty
  • Silvan Thüring
  • Peter Falkingham
  • Christian A. Meyer


Autochthonous Triassic sediments of the Vieux Emosson Formation near Lac d’Emosson, southwestern Switzerland, have yielded assemblages with abundant archosaur footprints that are assigned to chirotheriids based on pentadactyl pes and manus imprints with characteristic digit proportions. Tridactyl footprints formerly considered as those of dinosaurs are identified as incomplete extramorphological variants of chirotheriids. Recently discovered new sites, including a surface with about 1500 imprints, permit re-evaluation of ichnotaxonomy and modes of preservation. Most common are oval to circular impressions arranged in an “hourglass-like” shape, corresponding to pes-manus couples. Sediment displacement rims indicate the presence of true tracks rather than undertracks. A few well-preserved footprints with distinct digit traces allow closer assignments. Several chirotheriid ichnotaxa are present with Chirotherium barthii, ?Chirotherium sickleri, Isochirotherium herculis, Chirotheriidae cf. Isochirotherium isp. and indeterminate forms. This corresponds with characteristic assemblages from the Buntsandstein of the Germanic Basin. In the study area, the Vieux Emosson Formation is an up to 10 m thick fining-upward sequence with conglomerates, rippled sandstones, siltstones and mudstones and occasionally carbonate nodules. Sedimentological features such as high relief erosion, immature sediments, erosionally truncated metre-scale fining-upward sequences, palaeosols and unidirectional palaeocurrents clearly prove a fluvial depositional environment with sediment transport towards the northwest and the Germanic Basin. This contrasts with former assumptions of a coastal marine environment and a south-facing transport towards the Tethys. The footprints occur in the coarser lower portion of the sequence that is interpreted as a shallow braided river. From Obersand in the eastern Swiss Alps, a surface in dolomitic limestone (Röti Dolomite) is re-examined. The footprints are identified as Chirotherium barthii and were impressed in a carbonate tidal flat environment. Biostratigraphically, the occurrence of characteristic Buntsandstein assemblages with Chirotherium barthii supports an Anisian age of both locations.


Tetrapod footprint Chirotheriids Middle Triassic Vieux Emosson VS Obersand GL Switzerland 



Our sincere thanks go to Lionel Cavin, André Piuz and Pierre-Alain Proz (Natural History Museum Geneva) for field and helicopter support, to the Vouillamoz family of the Cabane du Vieux Emosson for their warm hospitality, to Petra Eggenschwiler, Silvia Schmutz and Justin Ahern for their support during the field campaign in 2013, and to the Fonds “Lehre & Forschung” (Natural History Museum Basel) for financial support. Finally, we thank two anonymous reviewers for their constructive comments and proposals for improvements.


  1. Amberger, G.F. (1960). L'autochtone de la partie nord-ouest du massif des Aiguilles Rouges (Haute-Savoie et Valais). Unpublished PhD Thesis, University of Geneva, p. 103.Google Scholar
  2. Avanzini, M., & Cavin, L. (2009). A new Isochirotherium trackway from the Triassic of Vieux Emosson, SW Switzerland: stratigraphic implications. Swiss Journal of Geosciences, 102, 353–361.CrossRefGoogle Scholar
  3. Avanzini, M., & Mietto, P. (2008). Lower and Middle Triassic footprint-based biochronology in the Italian Southern Alps. Oryctos, 8, 3–13.Google Scholar
  4. Avanzini, M., & Wachtler, M. (2012). Sphingopus ladinicus isp. nov. from the Anisian of the Braies Dolomites (Southern Alps, Italy). Bolletino della Società Paleontologica Italiana, 51(1), 63–70.Google Scholar
  5. Bourquin, S., Guillocheau, F., & Péron, S. (2009). Braided rivers within an arid alluvial plain (example from the Lower Triassic, western German Basin): recognition criteria and expression of stratigraphic cycles. Sedimentology, 56(7), 2235–2264.CrossRefGoogle Scholar
  6. Bourquin, S., Peron, S., & Durand, M. (2006). Lower Triassic sequence stratigraphy of the western part of the Germanic Basin (west of Black Forest): fluvial system evolution through time and space. Sedimentary Geology, 186(3), 187–211.CrossRefGoogle Scholar
  7. Bronner, G., & Demathieu, G. (1977). Premières traces de reptiles archosauriens dans le Trias autochtone des Aiguilles Rouges (Col des Corbeaux, Vieux Emosson, Valais, Suisse). Consèquences palèogèographiques et chronostratigraphiques. Comptes Rendus de l’Académie des Sciences (Paris), 285D, 649–652.Google Scholar
  8. Buatois, L.A., & Mángano, M.G. (2011). Ichnology. Organism–subtrate interactions in space and time. (p. 358). Cambridge: Cambridge University Press.Google Scholar
  9. Cavin, L., Avanzini, M., Bernardi, M., Piuz, A., Proz, P.A., Meister, C., Boissonnas, J. & Meyer, C.A. (2012). New vertebrate trackways from the autochthonous cover of the Aiguilles Rouges Massif and reevaluation of the dinosaur record in the Valais, SW Switzerland. Swiss Journal of Palaeontology, 131, 317–324.CrossRefGoogle Scholar
  10. Clark, N. D. L., & Corrance, H. (2009). New disvoveries of Isochirotherium herculis (Egerton 1838) and a reassessment of chirotheriid footprints from the Triassic of the Isle of Arran, Scotland. Scottish Journal of Geology, 45, 69–82.CrossRefGoogle Scholar
  11. Demathieu, G. (1970). Les empreintes de pas de vertébrés du Trias de la bordure Nord-Est du Massif Central. Cahiers de Paleontologie CRNS Paris, 211 p.Google Scholar
  12. Demathieu, G., & Weidmann, M. (1982). Les empreintes de pas de reptiles dans le Trias du Vieux Émosson (Finhaut, Valais, Suisse). Eclogae Geologicae Helvetiae, 75, 721–757.Google Scholar
  13. Díaz-Martínez, I., Castanera, D., Gasca, J. M., & Canudo, J. I. (2015). A reappraisal of the Middle Triassic chirotheriid Chirotherium ibericus Navás, 1906 (Iberian Range, NE Spain), with comments on the Triassic tetrapod track biochronology of the Iberian Peninsula. PeerJ, 3, 1044. doi: 10.7717/peerj.1044.CrossRefGoogle Scholar
  14. Díaz-Martínez, I., & Pérez-García, A. (2012). Historical and comparative study of the first Spanish vertebrate paleoichnological record and bibliographic review of the Spanish chirotheriid footprints. Ichnos, 19(3), 141–149.CrossRefGoogle Scholar
  15. Diedrich, C. (2009). Palaeogeographic evolution of the marine Middle Triassic marine Germanic basin changements—with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global and Planetary Change, 65, 27–55.CrossRefGoogle Scholar
  16. Diedrich, C. (2015). Isochirotherium trackways, their possible trackmakers (?Arizonasaurus): intercontinental giant archosaur migrations in the Middle Triassic tsunami-influenced carbonate intertidal mud flats of the European Germanic Basin. Carbonates and Evaporites, 30, 229–252.CrossRefGoogle Scholar
  17. Egerton, P. G. (1838). On two casts in sandstone of the impressions of the hindfoot of a gigantic Cheirotherium from the New Red Sandstone of Cheshire. Proceedings of the Geological Society of London, 3, 14–15.Google Scholar
  18. Ellenberger, P. (1972). Contribution à la classification des Pistes de Vertébrés du Trias: les types du Stormberg d’Afrique du Sud (I). Palaeovertebrata, Memoire Extraordinaire, 1–104.Google Scholar
  19. Epard, J. L. (1989). Stratigraphie du Trias et du Lias dauphinois entre Belledonne, Aiguilles-Rouges et Mont-Blanc. Bulletin de la Société vaudoise des sciences naturelles, 79(4), 301–338.Google Scholar
  20. Epard, J. L. (1990). La nappe de Morcles au sudouest du Mont-Blanc. Mémoires de Géologie No. 8.Google Scholar
  21. Feldmann, M., & Furrer, H. (2008). Die Saurierspuren am Tödi und ihre geologische Umgebung. In Naturforschende Gesellschaft des Kantons Glarus, NGG, Obersand 2008—Sommer der alpinen Artenvielfalt. Glarus, 18, 28–37.Google Scholar
  22. Fisher, J. A., Krapf, C. B., Lang, S. C., Nichols, G. J., & Payenberg, T. H. (2008). Sedimentology and architecture of the Douglas Creek terminal splay, Lake Eyre, central Australia. Sedimentology, 55, 1915–1930.CrossRefGoogle Scholar
  23. Fortuny, J., Bolet, A., Sellés, A. G., Cartanyà, J., & Galobart, À. (2011). New insights on the Permian and Triassic vertebrates from the Iberian peninsula with emphasis on the Pyrenean and Catalonian basins. Journal of Iberian Geology, 37(1), 65–86.CrossRefGoogle Scholar
  24. Furrer, H. (1993). Entdeckung und Untersuchung der Dinosaurierfährten im Nationalpark Cratschla. Ediziuns Specialas, 1, 24 p.Google Scholar
  25. Gand, G., De La Horra, R., Galán-Abellán, B., López-Gómez, J., Barrenechea, J. F., Arche, A., & Benito, M. I. (2010). New ichnites from the Middle Triassic of the Iberian Ranges (Spain): paleoenvironmental and paleogeographical implications. Historical Biology, 22(1–3), 40–56.CrossRefGoogle Scholar
  26. Gisler, C., Hochuli, P. A., Ramseyer, K., Bläis, H., & Schlunegger, F. (2007). Sedimentological and palynological constraints on the basal Triassic sequence in Central Switzerland. Swiss Journal of Geosciences, 100(2), 263–272.CrossRefGoogle Scholar
  27. Hampton, B. A., & Horton, B. K. (2007). Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54(5), 1121–1148.CrossRefGoogle Scholar
  28. Haubold, H. (1971a). Die Tetrapodenfährten des Buntsandsteins. Paläontologische Abhandlungen A, 4(3), 395–548.Google Scholar
  29. Haubold, H. (1971b). Ichnia Amphibiorum et Reptiliorum fossilium. Encyclopedia of Paleoherpetology, 18, 1–124.Google Scholar
  30. Haubold, H. (2006). Die Saurierfährten Chirotherium barthii Kaup, 1835—das Typusmaterial aus dem Buntsandstein bei Hildburghausen/Thüringen und das Chirotherium-Monument. Veröffentlichungen des Naturhistorischen Museums Schleusingen, 21, 3–31.Google Scholar
  31. Hunt, A. P., & Lucas, S. G. (2007). Tetrapod ichnofacies: a new paradigm. Ichnos, 14, 59–68.CrossRefGoogle Scholar
  32. Kaup, J. J. (1835a). Über Thierfährten bei Hildburghausen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1835, 227–228.Google Scholar
  33. Kaup, J.J. (1835b). Fährten von Beuteltieren. In: Das Tierreich, 246–248.Google Scholar
  34. King, M. J., Sarjeant, W. A. S., Thompson, D. B., & Tresise, G. (2005). A revised systematic ichnotaxonomy and review of the vertebrate footprint ichnofamily Chirotheriidae from the British Triassic. Ichnos, 12, 241–299.CrossRefGoogle Scholar
  35. Klein, H., & Haubold, H. (2007). Archosaur footprints—potential for biochronology of Triassic continental sequences. New Mexico Museum of Natural History and Science Bulletin, 41, 120–130.Google Scholar
  36. Klein, H. & Lucas, S.G. (2010a). Tetrapod footprints—their use in biostratigraphy and biochronology of the Triassic. In Lucas, S.G. (ed.), The Triassic timescale. Geological Society of London Special Publications, 334, 419–446.Google Scholar
  37. Klein, H., & Lucas, S. G. (2010b). Review of the tetrapod ichnofauna of the Moenkopi Formation/Group (Early-Middle Triassic) of the American Southwest. New Mexico Museum of Natural History and Science Bulletin, 50, 1–67.Google Scholar
  38. Klein, H., Voigt, S., Saber, H., Schneider, J. W., Hminna, A., Fischer, J., et al. (2011). First occurrence of a Middle Triassic tetrapod ichnofauna from the Argana Basin (Western High Atlas, Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 218–231.CrossRefGoogle Scholar
  39. Klein, H., Wizevich, M. & Meyer, C.A. (2015). Triassic archosaur footprints from Switzerland—ichnotaxonomy and biostratigraphic implications. 13th Annual Meeting of the European Association of Vertebrate Palaeontologists, Opole, Poland, Abstracts, p. 45.Google Scholar
  40. Leonardi, G. (1987). Glossary and manual of tetrapod footprint palaeoichnology (p. 117). Brasilia: Ministério das Minas e Energia Departamento Nacional da Produção Mineral.Google Scholar
  41. Lockley, M.G. (1989). Summary and prospectus. In Gillette, D.D. & Lockley, M.G. (Eds.), Dinosaur tracks and traces (pp. 441–447). Cambridge: Cambridge University Press.Google Scholar
  42. Lockley, M.G. (1991). Tracking Dinosaurs: a new look at an ancient world. (p. 238). Cambridge: Cambridge University Press.Google Scholar
  43. Lockley, M. G., & Meyer, C. A. (2000). Dinosaur tracks and other fossil footprints of Europe. (p. 323). New York: Columbia University Press.Google Scholar
  44. Lockley, M. G., & Pittmann, J. G. (1989). The Megatracksite Phenomenon: implications for Paleoeoclogy, Evolution and Stratigraphy. Journal of Vertebrate Paleontology, 9, 30A.Google Scholar
  45. Lucas, S. G. (1998). Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 143, 347–384.CrossRefGoogle Scholar
  46. Lucas, S. G. (2007). Tetrapod footprint biostratigraphy and biochronology. Ichnos, 14, 5–38.CrossRefGoogle Scholar
  47. Lucas, S.G. (2010). The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. In Lucas, S.G. (Ed.), The Triassic timescale. Geological Society of London Special Publication, 334, 447–500.Google Scholar
  48. Melchor, R. N., & De Valais, S. (2006). A review of Triassic tetrapod track assemblages from Argentina. Palaeontology, 49(2), 355–379.CrossRefGoogle Scholar
  49. Meyer, C.A., Marty, D., Klein, H., Wizevich, M., Falkingham, P., Thüring, S., Thüring, B., Eggenschwiler, P., Schmutz, S., Ahern, J., Cavin, L., Piuz, A. & Proz, P. A. (2014). A large new tetrapod tracksite from the Triassic of the western Swiss Alps (La Veudale; Vieux Emosson Formation, Late Olenekian to Anisian). 12th Annual Meeting of the European Association of Vertebrate Palaeontologists Torino, Italy. Abstracts, p. 112.Google Scholar
  50. Meyer, C. A., Marty, D., Thüring, B., Stecher, R., & Thüring, S. (2013). Dinosaurierspuren aus der Trias der Bergüner Stöcke (Parc Ela, Kanton Graubünden, SE Schweiz). Mitteilungen der Naturforschenden Gesellschaften beider Basel, 14, 135–144.Google Scholar
  51. Meyer, C. A., & Thüring, B. (2003). Dinosaurs of Switzerland. Comptes Rendus Académie des Sciences. Palevol Spec., 2, 103–117.CrossRefGoogle Scholar
  52. Peabody, F.E. (1948). Reptile and amphibian trackways from the Moenkopi Formation of Arizona and Utah. Vol. 27 (pp. 295–468). Berkeley: University of California Publications, Bulletin of the Department of Geological Sciences.Google Scholar
  53. Péron, S., Bourquin, S., Fluteau, F., & Guillocheau, F. (2005). Paleoenvironment reconstructions and climate simulations of the Early Triassic: impact of the water and sediment supply on the preservation of fluvial systems. Geodinamica Acta, 18, 431–446.CrossRefGoogle Scholar
  54. Pierson, T. C. (2005). Hyperconcentrated flow—transitional process between water flow and debris flow. In M. Jakob, O. Hungr, & D. M. Jakob (Eds.), Debris-flow hazards and related phenomena (pp. 159–202). Berlin: Springer.CrossRefGoogle Scholar
  55. Pittman, J.G. (1989). Stratigraphy, lithology, depositional environment and track type of dinosaur track-bearing beds of the gulf coastal plain. In Gillette, D. D. and Lockley M. G. (Eds.). Dinosaur tracks and traces (pp. 135–153). Cambridge: Cambridge University Press.Google Scholar
  56. Puff, P. & Klein, H. (2011). Die Solling-Formation des Buntsandstein bei Jena/Ostthüringen. Beiträge zur Geologie von Thüringen N.F., 18, 5–24.Google Scholar
  57. Raumer, J. F. V., & Bussy, F. (2004). Mont Blanc and Aiguilles Rouges geology of their polymetamorphic basement (external massifs, Westerns Alps, France-Switzerland). Mémoires de Géologie (Lausanne), 42, 1–210.Google Scholar
  58. Sáez, A., Anadon, P., Herrero, M. J., & Moscariello, A. (2007). Variable style of transition between Palaeogene fluvial fan and lacustrine systems, southern Pyrenean foreland, NE Spain. Sedimentology, 54(2), 367–390.CrossRefGoogle Scholar
  59. Soergel, W. (1925). Die Fährten der Chirotheria. Jena: Fischer.Google Scholar
  60. Wizevich, M.C. & Meyer, C.A. (2012). Stratigraphic and depositional environment analyses of the autochtonous Triassic cover of the Aiguilles Rouges Massif (Valais; southwestern Switzerland). Geological Society of America, Annual Meeting, Abstracts with Programs, 44(7), p. 553.Google Scholar
  61. Wizevich, M.C., Meyer, C.A., Linnemann, U., Gärtner, A., Sonntag, B. L., & Hofmann, M. (2015). Enhanced provenance analysis of the autochthonous Triassic sandstones of southwest Switzerland using zircon U-Pb dating, Abstract Book of the 31st International Association of Sedimentologists (IAS) Meeting of Sedimentology, Krakow, Poland, p. 586.Google Scholar
  62. Xing, L. D., Klein, H., Lockley, M. G., Li, J., Zhang, J., Matsukawa, M., & Xiao, J. (2013). Chirotherium trackways from the Middle Triassic of Guizhou, China. Ichnos, 20, 99–107.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2016

Authors and Affiliations

  • Hendrik Klein
    • 1
    Email author
  • Michael C. Wizevich
    • 2
  • Basil Thüring
    • 3
  • Daniel Marty
    • 3
  • Silvan Thüring
    • 4
  • Peter Falkingham
    • 5
  • Christian A. Meyer
    • 3
  1. 1.Saurierwelt Paläontologisches MuseumNeumarktGermany
  2. 2.Department of Geological SciencesCentral Connecticut State UniversityNew BritainUSA
  3. 3.Naturhistorisches MuseumBaselSwitzerland
  4. 4.NaturmuseumSolothurnSwitzerland
  5. 5.Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK

Personalised recommendations