Swiss Journal of Palaeontology

, Volume 135, Issue 2, pp 249–274 | Cite as

Roveacrinida (Crinoidea) from Late Triassic (early Carnian) black shales of Southwest China

  • Hans HessEmail author
  • Walter Etter
  • Hans Hagdorn


Rich material of a tiny pelagic roveacrinid from the lower member of the Carnian Xiaowa Formation, Guanling area (Guizhou Province, Southwest China), is described. The remains are assigned to a distinct species, Osteocrinus sinensis n. sp. The species is characterised by an aboral element of variable length, a radial circlet forming a small cup and unusually long arms with hollow brachials grouped in pairs. This morphology is unique among crinoids. The remains settled partly articulated on the seafloor. Coprolites comprised of roveacrinid remains and apparently produced by ammonites are common, corroborating a pelagic lifestyle of the roveacrinids. An overview of previously described species of Osteocrinus is given; the present material contributes recognising variability and growth stages of the partly insufficiently known forms.


Pelagic crinoids Roveacrinida Somphocrinidae Guanling Biota Triassic Carnian 



Special thanks are due to Prof. Wang Xiaofeng from the Yichang Institute of Geology and Mineral Resources for inviting Hagdorn to join the working group “Guanling Biota”. With his international team he promoted the research on the fossil Lagerstätten of the Xiaowa Formation and provided the scientific basis for the Guanling National Geopark and Museum at Wolonggong, the `Hill where the Dragon Sleeps´. Hagdorn gratefully acknowledges assistance during field work and financial support by the Geological Survey of China and the Guanling County Government. He is also indebted to the German Science Foundation for covering travel expenses. Thanks are also due to P. M. Sander and O. Dülfer (University of Bonn) and E. Bieler (University of Basel) for providing the SEM micrographs. The authors are grateful to two anonymous reviewers for the comments and corrections that greatly improve the final manuscript.


  1. Baumiller, T., Gahn, F. J., Hess, H. & Messing, C. G. (2008). Taphonomy as an indicator of behavior among fossil crinoids. In Ausich, W. I., & Webster, G. (Ed.), Echinoderm paleobiology (pp. 7–20) Bloomington: Indiana University Press.Google Scholar
  2. Berner, R. A., VandenBrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–558.CrossRefGoogle Scholar
  3. Bizzarini, F., Laghi, G. F., Nicosia, U., & Russo, F. (1989). Distribuzione stratigraphica dei microcrinoidi (Echinodermata) nella formazione di S. Cassiano (Triassico superiore, Dolomiti): Studio preliminare. Atti della Società dei Naturalisti e Matematici di Modena, 120, 1–12.Google Scholar
  4. Bown, P. R., Lees, J. A., & Young, J. R. (2004). Calcareous nannoplankton evolution and diversity through time. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores—From molecular process to global impact (pp. 481–508). Berlin: Springer.Google Scholar
  5. Donofrio, D. A., & Mostler, H. (1975). Neue Schwebcrinoiden aus Hallstätter Kalken des Berchtesgadener Raumes. Geologisch-Paläontologische Mitteilungen Innsbruck, 5, 1–28.Google Scholar
  6. Gaetani, M. (2009). GSSP of the Carnian stage defined. Albertiana, 37, 36–38.Google Scholar
  7. Hagdorn, H. (2011). The Triassic—Crucial period of post-Palaeozoic crinoid diversification. Swiss Journal of Palaeontology, 130, 91–112.CrossRefGoogle Scholar
  8. Hagdorn, H., & Wang, X. (2015). The pseudoplanktonic crinoid Traumatocrinus from the Late Triassic of Southwest China—Morphology, ontogeny, taphonomy. Palaeoworld, 24(4), 479–496.CrossRefGoogle Scholar
  9. Hess, H. (1999). Upper Jurassic Solnhofen Plattenkalk of Bavaria, Germany. In H. Hess, W. I. Ausich, C. E. Brett, & M. J. Simms (Eds.), Fossil crinoids (pp. 214–224). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Hess, H. (2002). Remains of Saccocomids (Crinoidea: Echinodermata) from the Upper Jurassic of southern Germany. Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie), 329, 57.Google Scholar
  11. Hess, H. (2010). Paleoecology of pelagic crinoids. Treatise Online No. 16, 33 pp.Google Scholar
  12. Hess, H. (2015a). Roveacrinids (Crinoidea) from the mid-Cretaceous of Texas: Ontogeny, phylogeny, functional morphology and lifestyle. Swiss Journal of Palaeontology, 134, 77–107.CrossRefGoogle Scholar
  13. Hess, H. (2015b). Stachelhäuter, Seelilien. In G. Arratia, H.-P. Schultze, H. Tischlinger, & G. Viohl (Eds.), Solnhofen, Ein Fenster in die Jurazeit (pp. 299–307). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  14. Hess, H., & Etter, W. (2011). Life and death of Saccocoma tenella (Goldfuss). Swiss Journal of Geosciences, 104(Supplement 1), S99–S106.CrossRefGoogle Scholar
  15. Hess, H., & Messing, C. G. (2011). Treatise on Invertebrate Paleontology, Part T. In Ausich, W. I. (Ed.) Echinodermata 2, Revised, Crinoidea Vol. 3, 261 pp. The University of Kansas Paleontological Institute, Lawrence, Kansas.Google Scholar
  16. Keupp, H., & Schweigert, G. (2015). Kopffüsser (Cephalopoda). In G. Arratia, H.-P. Schultze, H. Tischlinger, & G. Viohl (Eds.), Solnhofen, Ein Fenster in die Jurazeit (pp. 210–228). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  17. Kozur, H., & Mostler, H. (1971). Holothurien-Sklerite und Conodonten aus der Mittel- und Obertrias von Köveskal (Balatonhochland, Ungarn). Geologisch-Paläontologische Mitteilungen Innsbruck, 1, 1–36.Google Scholar
  18. Kristan-Tollmann, E. (1970). Die Osteocrinusfazies, ein Leithorizont von Schwebcrinoiden im Oberladin—Unterkarn der Tethys. Erdöl und Kohle, Erdgas, Petrochemie, 23, 781–789.Google Scholar
  19. Kristan-Tollmann, E. (1977). Zur Gattungsunterscheidung und Rekonstruktion der triadischen Schwebcrinoiden. Paläontologische Zeitschrift, 51, 185–198.CrossRefGoogle Scholar
  20. Kristan-Tollmann, E. (1987). Triassic of the Tethys and its relation with the Triassic of the Pacific Realm. In K. G. Mc Kenzie (Ed.), Shallow Tethys 2 (pp. 169–186). Rotterdam: Balkema.Google Scholar
  21. Kristan-Tollmann, E. (1988). Unexpected communities among the crinoids within the Triassic Tethys and Panthalassa. In R. D. Burke (Ed.), Echinoderm Biology (pp. 133–142). Rotterdam: Balkema.Google Scholar
  22. Kristan-Tollmann, E. (1991). Echinoderms from the Middle Triassic Sina Formation (Aghdarband Group) in NE Iran. Abhandlungen der geologischen Bundesanstalt Wien, 38, 175–194.Google Scholar
  23. Kristan-Tollmann, E., & Krystyn, L. (1975). Die Mikrofauna der ladinisch-karnischen Hallstätter Kalke von Saklibeli (Taurus-Gebirge, Türkei) I. Sitzungsberichte der Österr. Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse. Abt I, 184, 259–340.Google Scholar
  24. Kristan-Tollmann, E., & Strele, K. (1994). Die Crinoiden-Vergesellschaftung der unterkarnischen Münztaler Schichten der Mürzschlucht bei Frein (Steiermark, Österreich). Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich-Ungarn, 2, pp. 329–342. ISBN3-900312-92-3.Google Scholar
  25. Kristan-Tollmann, E., & Tollmann, A. (1983). Überregionale Züge der Tethys in Schichtfolge und Fauna am Beispiel der Trias zwischen Europa und Fernost, speziell China. Schriftenreihen der Erdwissenschaftlichen Kommissionen, 5, pp. 177–230; Veröffentlichungen des Österreichischen Nationalkomitees für das International Geological Correlation Programme Project Nr. 73/I/4 (Triassic of the Tethys Realm).Google Scholar
  26. Laghi, G. F., & Rechichi, M. (1999). Microcrinoids and holothurian sclerites. In Broglio Loriga, C., Cirilli, S., de Zanche, V., di Bari, D., Gianolla, P., Laghi, G. F., Lowrie, W., Manfrin, S., Mastandrea, A., Mietto, P., Muttoni, G., Neri, C., Posento, R., Rechichi, M., Rettori, R., & Roghi, G. (Eds.), The Prati di Stuores/Stuores Wiesen Section (Dolomites, Italy): a candidate Global Stratotype Section and Point for the base of the Carnian stage. Rivista Italiana di Paleontologia e Stratigrafia, 105, 61–63.Google Scholar
  27. McRoberts, C. A. (2010). Biochronology of Triassic bivalves. In Lucas, S. G. (Ed.), The Triassic Timescale (pp. 201–219). Geological Society, London, Special Publications 334.Google Scholar
  28. Mostler, H. (1972). Die stratigraphische Bedeutung von Crinoiden-, Echiniden- und Ophiuren-Skelettelementen in triassischen Karbonatgesteinen. Mitteilungen der Gesellschaft für Geologie- und Bergbaustudien in Österreich, 21, 711–728.Google Scholar
  29. Mueller, S., Hounslow, M. S., & Kürschner, W. M. (2016a). Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in Spitsbergen (Norway). Journal of the Geological Society, 173, 186–201.CrossRefGoogle Scholar
  30. Mueller, S., Krystyn, L., & Kürschner, W. M. (2016b). Climate variability during the Carnian pluvial phase—A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 198–211.CrossRefGoogle Scholar
  31. Oravecz-Scheffer, A. (1979). Pelagikus crinoidea maradványok a dunántúli Triász képzödményekböl.—Földtani Közlöny. Bulletin of the Hungarian Geological Survey, 109, 75–100.Google Scholar
  32. Peck, R. E. (1943). Lower Cretaceous crinoids from Texas. Journal of Paleontoogy, 17, 451–475.Google Scholar
  33. Peck, R. E. (1948). A Triassic crinoid from Mexico. Journal of Paleontology, 22, 81–84.Google Scholar
  34. Preto, N., Kustatscher, E., & Wignall, P. B. (2010). Triassic climates—State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 1–10.CrossRefGoogle Scholar
  35. Rasmussen, H. W. (1978). Articulata. In R. C. Moore & C. Teichert (Eds.), Treatise on invertebrate paleontology. Pt. T, Echinodermata 2, Vol. 3, pp. T813–T928. Geological Society of America and University of Kansas Press.Google Scholar
  36. Salamon, M., Gorzelak, P., Hanken, N.-M., Riise, H. E., & Ferré, B. (2015). Crinoids from Svalbard in the aftermath of the end-Permian mass extinction. Polish Polar Research, 36, 225–238.CrossRefGoogle Scholar
  37. Schweigert, G., & Dietl, G. (1999). Zur Erhaltung und Einbettung von Ammoniten im Nusplinger Plattenkalk (Oberjura, Südwestdeutschland). Stuttgarter Beiträge zur Naturkunde, Serie B, 272, 1–31.Google Scholar
  38. Scott, R. W., Root, S. A., Tenery, J. H., & Nestell, M. (1977). Morphology of the cretaceous microcrinoid Poecilocrinus (Roveacrinidae). Journal of Paleontology, 51, 343–349.Google Scholar
  39. Simms, M. J. (1990). Crinoid diversity and the Triassic/Jurassic Boundary. Cahiers de l’Université Catholique de Lyon, Série Sciences, 3, 67–77.Google Scholar
  40. Smith, A. (1984). Echinoid palaeobiology. London: George Allen & Unwin.Google Scholar
  41. Stöhr, S., O’Hara, T. D. & Thuy, B. (2012). Global diversity of brittle stars (Echinodermata, Ophiuroidea). PLoS One, 7(3), 1–14, e31940.Google Scholar
  42. Wang, X., Bachmann, G. H., Hagdorn, H., Sander, P. M., Cuny, G., Chen, X., et al. (2008). The Late Triassic black shales of the Guanling Area (Guizhou Province, Southwestern China)—A Unique Marine Reptile and Pelagic Crinoid Fossil Lagerstätte. Palaeontology, 51, 27–61.CrossRefGoogle Scholar
  43. Wang, C., Wang, X., Hagdorn, H., Chen, X., & Chen, L. (2007). The first discovery of Triassic roveacrinids in China and its significance. Acta Palaeontologica Sinica, 46, 334–339. (In Chinese with English Abstract.).CrossRefGoogle Scholar
  44. Ward, P., & Kirschvink, J. (2015). A new history of life. London: Bloomsbury.Google Scholar
  45. Winguth, A. M. E., Shields, C. A., & Winguth, C. (2015). Transition into a Hothouse World at the Permian-Triassic boundary—A model study. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 316–327.CrossRefGoogle Scholar
  46. Zou, X., Balini, M., Jiang, D., Tintori, A., Zuo, Y., & Sun, Y. (2015). Ammonoids from the Zhuganpo Member of the Falang Formation at Nimaigu and their relevance for dating the Xingyi Fossil Lagerstätte (Late Ladinian, Guizhou, China). Rivista Italiana di Paleontologia e Stratigraphia, 121, 35–161.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2016

Authors and Affiliations

  1. 1.Naturhistorisches Museum BaselBaselSwitzerland
  2. 2.Muschelkalkmuseum IngelfingenIngelfingenGermany

Personalised recommendations