Swiss Journal of Palaeontology

, Volume 135, Issue 2, pp 275–294 | Cite as

Marine Early Triassic Osteichthyes from Spiti, Indian Himalayas

  • Carlo RomanoEmail author
  • David Ware
  • Thomas Brühwiler
  • Hugo Bucher
  • Winand Brinkmann


A new, marine osteichthyan (bony fish) fauna from the Early Triassic of northern India is presented. The material was collected in situ at localities within Pin Valley (Lahaul and Spiti District, Himachal Pradesh, India) and is dated as middle-late Dienerian (one specimen possibly earliest Smithian). The new ichthyofauna includes a lower jaw of the predatory basal ray-finned fish Saurichthys, a nearly complete specimen of a parasemionotid neopterygian (cf. Watsonulus cf. eugnathoides), as well as further articulated and disarticulated remains (Actinopterygii indet., Actinistia indet.), and thus comprises the most complete Triassic fish fossils known from the Indian subcontinent. Saurichthys is known from many Triassic localities and reached a global distribution rapidly after the Late Permian mass extinction event. Parasemionotidae, a species-rich family restricted to the Early Triassic, also achieved widespread distribution during this epoch. Comparison of the Spiti material with other parasemionotid species reveals similarities with Watsonulus eugnathoides from Madagascar. However, taxonomic ambiguities within Parasemionotidae prevent a specific attribution of the Spiti specimen. The new material also includes an isolated actinistian urohyal exhibiting morphology distinct from any previously described urohyal. Marine Dienerian black shale deposited on continental shelves are common not only in the Himalayas but also in other geographic regions. Anoxic depositional settings provide ideal preservational conditions for vertebrate fossils, suggesting that additional ichthyofaunas could still be discovered in marine Dienerian strata of other localities. The study of Early Triassic fish assemblages, including the presented one, is fundamental for our understanding of the great osteichthyan diversification after the Late Permian mass extinction event.


Neotethys Northern Indian Margin Gondwana Anoxia Biotic recovery Urohyal 



Canadian Museum of Nature (Fossil Vertebrate), Ottawa, Canada


Muséum National d’Histoire Naturelle, Paris, France


Paläontologisches Institut und Museum, Universität Zürich, Zürich, Schweiz



We greatly appreciate discussions with Ilja Kogan (Department of Palaeontology, Geological Institute, TU Bergakademie Freiberg, Germany), Piotr and Roksana Skrzycki (Krakow, Poland), as well as Thodoris Argyriou, Richard Hofmann, and Michael Hautmann (all PIMUZ) during preparation of the manuscript. Gaël Clément and Monette Véran (both MNHN.F) are thanked for their hospitality and help during visit of the Madagascar collection at the Paris museum in 2012. We thank Lui Unterrassner (Zürich) for assistance during field work in 2009. Rosi Roth (PIMUZ) is thanked for photographs and preparation of the cast of PIMUZ A/I 4360 and Ashley Latimer (PIMUZ) for correcting the English. We highly appreciate critical remarks by Adriana López-Arbarello (Bayerische Staatssammlung für Paläontologie, Munich, Germany) and a second, anonymous reviewer, which helped to improve the quality of this contribution. We deeply acknowledge support by the Swiss National Science Foundation (project numbers 120311/135075 and 144462 to W.B. and H.B, and 200021/135446 to H.B.).


  1. Adamicka, P., & Ahnelt, H. (1976). Beiträge zur funktionellen Analyse und zur Morphologie des Kopfes von Latimeria chalumnae Smith. Annalen des Naturhistorischen Museum in Wien, 80, 251–271.Google Scholar
  2. Agarwal, P. N., & Singh, S. N. (1981). Recent advances in micropalaeontological investigations of the marine Triassic rocks of India. Journal of the Palaeontological Society of India, 25, 110–129.Google Scholar
  3. Agassiz, L. (1833–1843). Recherches sur les poissons fossiles, II. Neuchâtel: Imprimerie de Petitpierre.Google Scholar
  4. Agassiz, L. (1834). Abgerissene Bemerkungen über fossile Fische. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1834, 379–390.Google Scholar
  5. Aldinger, H. (1931). Über karbonische Fische aus Westfalen. Paläontologische Zeitschrift, 13(3), 186–201.CrossRefGoogle Scholar
  6. Arratia, G., & Schultze, H.-P. (1990). The urohyal: development and homology within osteichthyans. Journal of Morphology, 203(3), 247–282.CrossRefGoogle Scholar
  7. Bandyopadhyay, S. (1999). Gondwana vertebrate faunas of India. Proceedings of the Indian National Science Academy United States of America, 65(3), 285–313.Google Scholar
  8. Bandyopadhyay, S., RoyChowdhury, T. K., & Sengupta, D. P. (2002). Taphonomy of some Gondwana vertebrate assemblages of India. Sedimentary Geology, 147, 219–245.CrossRefGoogle Scholar
  9. Beltan, L. (1968). La faune ichthyologique de l’Eotrias du N.W. de Madagascar: le neurocrâne. Paris: Cahiers de Paléontologie CNRS.Google Scholar
  10. Beltan, L. (1980). Sur la présence d’un poisson volant, Icarealcyon malagasium, n.g. n.sp. dans l’Eotrias malgache. 26e Congrès Géologique International, 1, 155.Google Scholar
  11. Beltan, L. (1984). A propos d’un poisson volant biplane de l’Eotrias du NW de Madagascar: Icarealcyon malagasium Beltan. Annales de la Société Géologique du Nord, 103, 75–82.Google Scholar
  12. Beltan, L., & Janvier, P. (1978). Un nouveau Saurichthyidae (Pisces, Actinopterygii), Saurichthys nepalensis n. sp. du Trias inférieur des Annapurnas (Thakkola, Nepal) et sa signification paléobiogéographique. Cybium, 3(4), 17–24.Google Scholar
  13. Bemis, W. E., Burggren, W. W., & Kemp, N. E. (1987). The biology and evolution of lungfishes. New York: Alan R. Liss Inc.Google Scholar
  14. Bengtson, P. (1988). Open nomenclature. Palaeontology, 31(1), 223–227.Google Scholar
  15. Berg, L. S. (1941). Lower Triassic fishes of the Tunguska coal basin, Yenisei, Siberia. Bulletin of the Academy of Sciences USSR (Biological Sciences), 1941, 414–419.Google Scholar
  16. Bhargava, O. N., Krystyn, L., Balini, M., Lein, R., & Nicora, A. (2004). Revised litho- and sequence stratigraphy of the Spiti Triassic. Albertiana, 30, 21–39.Google Scholar
  17. Brandt, S. (2007). Über isolierte Knochenfunde von Quastenflossern aus dem Ober-Perm von Thüringen und Hessen - Ein Beitrag zur Anatomie von Coelacanthus granulatus Agassiz. Veröffentlichungen Naturhistorisches Museum Schleusingen, 22, 69–78.Google Scholar
  18. Brinkmann, W., Romano, C., Bucher, H., Ware, D., & Jenks, J. (2010). Palaeobiogeography and stratigraphy of advanced gnathostomian fishes (Chondrichthyes and Osteichthyes) in the Early Triassic and from selected Anisian localities (Report 1863–2009). Zentralblatt für Geologie und Paläontologie II, 2009(5/6), 765–812.Google Scholar
  19. Brough, J. (1939). The Triassic fishes of Besano, Lombardy. London: British Museum (Natural History).Google Scholar
  20. Brühwiler, T., Bucher, H., & Krystyn, L. (2012). Middle and late Smithian (Early Triassic) ammonoids from Spiti, India. Special Papers in Palaeontology, 88, 115–174.Google Scholar
  21. Brühwiler, T., Ware, D., Bucher, H., Krystyn, L., & Goudemand, N. (2010). New early Triassic ammonoid faunas from the Dienerian/Smithian boundary beds at the Induan/Olenekian GSSP candidate at Mud (Spiti, Northern India). Journal of Asian Earth Sciences, 39(6), 724–739.CrossRefGoogle Scholar
  22. Bryant, W. L. (1934). New fishes from the Triassic of Pennsylvania. Proceedings of the American Philosophical Society, 73(5), 319–326.Google Scholar
  23. Burgess, S. D., Bowring, S., & Shen, S. (2014). High-precision timeline for Earth’s most severe extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3316–3321.CrossRefGoogle Scholar
  24. Cavin, L., Furrer, H., & Obrist, C. (2013). New coelacanth material from the Middle Triassic of eastern Switzerland, and comments on the taxic diversity of actinistans. Swiss Journal of Geoscience, 106(2), 161–177.CrossRefGoogle Scholar
  25. Cavin, L., & Grădinaru, E. (2014). Dobrogeria aegyssensis, a new early Spathian (Early Triassic) coelacanth from North Dobrogea (Romania). Acta Geologica Polonica, 64(2), 161–187.CrossRefGoogle Scholar
  26. Chang, M.-M., & Jin, F. (1996). Mesozoic fish faunas of China. In G. Arratia & G. Viohl (Eds.), Mesozoic fishes, systematics and paleoecology (pp. 461–478). München: Dr. Friedrich Pfeil.Google Scholar
  27. Chang, M.-M., & Miao, D. (2004). An overview of Mesozoic fishes in Asia. In G. Arratia & A. Tintori (Eds.), Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity (pp. 535–563). München: Dr. Friedrich Pfeil.Google Scholar
  28. Chatterjee, S., & Roy-Chowdhury, T. (1974). Triassic Gondwana vertebrates from India. Indian Journal of Earth Sciences, 1(1), 96–112.Google Scholar
  29. Chhabra, N. L., & Mishra, V. P. (2002). Middle Triassic fish teeth from the Kalapani Limestone of Malla Johar, Chamoli District (Uttaranchal). Journal of the Palaeontological Society of India, 47, 151–155.Google Scholar
  30. Cloutier, R., & Forey, P. L. (1991). Diversity of extinct and living actinistian fishes (Sarcopterygii). Environmental Biology of Fishes, 32, 59–74.CrossRefGoogle Scholar
  31. Cope, E. D. (1871). Contribution to the ichthyology of the lesser Antilles. Transactions of the American Philosophical Society, 14, 445–483.CrossRefGoogle Scholar
  32. Cope, E. D. (1872). Observations on the systematic relations of the fishes. Proceedings of the American Association for the Advancement of Science, 20, 317–343.Google Scholar
  33. Cope, E. D. (1887). Geology and palaeontology. Zittel’s manual on palaeontology. American Naturalist, 22(11), 1014–1019.Google Scholar
  34. Davies, G. R., Moslow, T. F., & Sherwin, M. D. (1997). Ganoid fish Albertonia sp. from the Lower Triassic Montney Formation, Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 45(4), 715–718.Google Scholar
  35. De Koninck, L. (1863a). Descriptions of some fossils from India, discovered by Dr. A. Fleming, of Edinburgh. The Quarterly Journal of the Geological Society of London, 19(1), 1–19.CrossRefGoogle Scholar
  36. De Koninck, L. (1863b). Notice sur les fossiles de l’Inde découverts par M. le Dr Fleming, d’Edimbourg. Mémoires de la Société Royale des Sciences de Liége, 18, 553–579.Google Scholar
  37. Deecke, W. (1927). Über die Triasfische. Paläontologische Zeitschrift, 8(3), 184–198.CrossRefGoogle Scholar
  38. Diener, C. (1897). Part I: The Cephalopoda of the lower Trias. Palaeontologia Indica, series 15. Himalayan fossils, 2, 1–181.Google Scholar
  39. Diener, C. (1908). Die Faunen der unteren Trias des Himalaya. Mitteilungen der Geologischen Gesellschaft in Wien, 1(1–2), 77–84.Google Scholar
  40. Diener, C. (1912). The Trias of the Himálayas. Memoirs of the Geological Survey of India, 36(3), 1–176.Google Scholar
  41. Dutel, H., Herbin, M., & Clément, G. (2015a). First occurrence of a mawsoniid coelacanth in the Early Jurassic of Europe. Journal of Vertebrate Paleontology, 35(3), e929581.CrossRefGoogle Scholar
  42. Dutel, H., Herrel, A., Clément, G., & Herbin, M. (2015b). Redescription of the hyoid apparatus and associated musculature in the extant coelacanth Latimeria chalumnae: functional implications for feeding. The Anatomical Record, 298(3), 579–601.CrossRefGoogle Scholar
  43. Dutel, H., Maisey, J. G., Schwimmer, D. R., Janvier, P., Herbin, M., & Clément, G. (2012). The giant Cretaceous coelacanth (Actinistia, Sarcopterygii) Megalocoelacanthus dobiei Schwimmer, Stewart & Williams, 1994, and its bearing on Latimerioidei interrelationships. PLoS ONE, 7(11), e49911.CrossRefGoogle Scholar
  44. Echols, J. (1963). A new genus of Pennsylvanian fish (Crossopterygii, Coelacanthiformes) from Kansas. Publications of the Museum of Natural History, University of Kansas, 12(10), 475–501.Google Scholar
  45. Forey, P. L. (1998). History of the coelacanth fishes. London: Chapman & Hall.Google Scholar
  46. Friedman, M. (2015). The early evolution of ray-finned fishes. Palaeontology, 58(2), 213–228.CrossRefGoogle Scholar
  47. Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., et al. (2007). Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters, 258(3–4), 593–604.CrossRefGoogle Scholar
  48. Gardiner, B. G. (1966). Catalogue of Canadian fossil fishes. Contribution/Royal Ontario Museum, Toronto, Life Sciences Division, 68, 1–154.Google Scholar
  49. Goel, R. K. (1977). Triassic conodonts from Spiti (Himachal Pradesh), India. Journal of Paleontology, 51(6), 1085–1101.Google Scholar
  50. Goudemand, N. (2010). Taxonomy and biochronology of Early Triassic conodonts. Ph.D. Thesis, University of Zurich.Google Scholar
  51. Goudemand, N. (2014). Note on the conodonts from the Induan-Olenekian boundary. Albertiana, 42, 49–51.Google Scholar
  52. Grande, L. (2010). An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy: The resurrection of Holostei. American Society of Ichthyology and Herpetology, Special Publication, 6(2A), 1–871.Google Scholar
  53. Grande, L., & Bemis, W. E. (1998). A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Society of Vertebrate Paleontology Memoir, 4, 1–690.CrossRefGoogle Scholar
  54. Griffith, J. (1959). On the anatomy of two saurichthyid fishes, Saurichthys striolatus (Bronn) and S. curionii (Bellotti). Proceedings of the Zoological Society of London, 132(4), 587–606.CrossRefGoogle Scholar
  55. Gupta, A. (2009). Ichthyofauna of the Lower Triassic Panchet Formation, Damodar valley basin, West Bengal, and its implications. Indian Journal of Geosciences, 63(3), 275–286.Google Scholar
  56. Hayden, H. H. (1904). The geology of Spiti, with parts of Bashahr and Rupshu. Memoirs of the Geological Survey of India, 36(1), 1–129.Google Scholar
  57. Hennig, E. (1951). Trachymetopon liassicum Ald., ein Riesen-Crossopterygier aus Schwäbischem Ober-Lias. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 94(1), 67–79.Google Scholar
  58. Hermann, E., Hochuli, P. A., Méhay, S., Bucher, H., Brühwiler, T., Ware, D., et al. (2011). Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records. Sedimentary Geology, 234(1–4), 19–41.CrossRefGoogle Scholar
  59. Hibbard, C. W. (1933). Two new species of Coelacanthus from the Middle Pennsylvanian of Anderson County, Kansas. Kansas University Science Bulletin, 21(8), 279–287.Google Scholar
  60. Hu, S., Zhang, Q., Chen, Z.-Q., Zhou, C., Lü, T., Xie, T., et al. (2010). The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proceedings of the Royal Society B, 278, 2274–2282.CrossRefGoogle Scholar
  61. Huxley, T. H. (1880). On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the scientific meetings of the Zoological Society of London, 1880, 649–662.Google Scholar
  62. Jain, S. L., & Roychowdhury, T. (1987). Fossil vertebrates from the Pranhita-Godavari Valley (India) and their stratigraphic correlation. In G. D. McKenzie (Ed.), Gondwana six: Stratigraphy, sedimentology, and paleontology. Geophysical monograph series (Vol. 41, pp. 219–228). Washington D.C: American Geophysical Union.CrossRefGoogle Scholar
  63. Jin, F. (2006). An overview of Triassic fishes from China. Vertebrata PalAsiatica, 44(1), 28–42.Google Scholar
  64. Krafft, A. V., & Diener, C. (1909). Lower Triassic Cephalopoda from Spiti, Malla Johar, and Byans. Palaeontologia Indica, Series 15, 6(1), 1–186.Google Scholar
  65. Krystyn, L., Balini, M., & Nicora, A. (2004). Lower and Middle Triassic stage and substage boundaries in Spiti. Albertiana, 30, 40–53.Google Scholar
  66. Krystyn, L., Bhargava, O. N., & Richoz, S. (2007a). A candidate GSSP for the base of the Olenekian Stage: Mud at Pin Valley; district Lahul & Spiti, Himachal Pradesh (Western Himalaya), India. Albertiana, 35, 5–29.Google Scholar
  67. Krystyn, L., & Orchard, M. J. (1996). Lowermost Triassic ammonoid and conodont biostratigraphy of Spiti, India. Albertiana, 17, 10–21.Google Scholar
  68. Krystyn, L., Richoz, S., & Bhargava, O. N. (2007b). The Induan-Olenekian Boundary (IOB) in Mud—An update of the candidate GSSP section M04. Albertiana, 36, 33–45.Google Scholar
  69. Kusaka, T. (1974). The urohyal of fishes. Tokyo: University of Tokyo Press.Google Scholar
  70. Lambe, L. M. (1916). Ganoid fishes from near Banff, Alberta. Proceedings and Transactions of the Royal Society of Canada, Series III, 10, 35–44.Google Scholar
  71. Lehman, J.-P. (1952). Etude complémentaire des poissons de l’Eotrias de Madagascar. Kungliga Svenska Vetenskapsakademiens Handlingar, Fjärde Serien, 2(6), 1–201.Google Scholar
  72. Lehman, J.-P. (1966). Crossopterygii. In J. Piveteau (Ed.), Traité de paléontologie. Tome IV (Vol. 3, pp. 301–412). Paris: Masson et Cie.Google Scholar
  73. Lehman, J.-P., Château, C., Laurain, M., & Nauche, M. (1959). Paléontologie de Madagascar XXVII. Les poissons de la Sakamena moyenne. Annales de Paleontologie, 45, 175–219.Google Scholar
  74. Li, Q. (2009). A new parasemionotid-like fish from the Lower Triassic of Jurong, Jiangsu Province, South China. Palaeontology, 52(2), 369–384.CrossRefGoogle Scholar
  75. Liu, G.-B., Feng, H.-Z., Wang, J.-X., Wu, T.-M., & Zhai, Z.-H. (2002). Early Triassic fishes from Jurong, Jiangsu. Acta Palaeontologica Sinica, 41(1), 27–52.Google Scholar
  76. López-Arbarello, A. (2004). The record of Mesozoic fishes from Gondwana (excluding India and Madagascar). In G. Arratia & A. Tintori (Eds.), Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity (pp. 597–624). München: Dr. Friedrich Pfeil.Google Scholar
  77. Mantell, G. (1822). The fossils of the South Downs; or illustrations of the geology of Sussex. London: Lupton Relfe.Google Scholar
  78. Mehrotra, D. K., Dass, S., & Sehgal, A. (1983a). Occurrence of fish microremains from the Kuti and Kalapani area, Kumaon Himalaya, Uttar Pradesh. Geoscience Journal, 4(2), 205–206.Google Scholar
  79. Mehrotra, D. K., Sahgal, A., & Jangpangi, B. S. (1983b). On some Early Triassic fish microremains from the Shalshal area of Kumaun Himalaya, Uttar Pradesh. Himalayan Geology, 11, 433–437.Google Scholar
  80. Miles, R. S. (1977). Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. Zoological Journal of the Linnean Society, 61(1–3), 1–328.CrossRefGoogle Scholar
  81. Millot, J., & Anthony, J. (1958). Anatomie de Latimeria chalumnae. Tome I. Squelette, muscles et formations de soutien. Paris: Éditions du Centre National de la Recherche Scientifique.Google Scholar
  82. Mishra, V. P., Mehrotra, D. K., Pande, A. C., & Ali, Md A. (1990). A teleostean fish from the Lower Triassic of Chamba, Himachal Pradesh. Journal of the Palaeontological Society of India, 35, 73–76.Google Scholar
  83. Misra, R. C., Sahni, A., & Chhabra, N. (1973). Triassic conodonts and fish remains from Niti Pass, Kumaun Himalaya. Himalayan Geology, 3, 148–161.Google Scholar
  84. Moy-Thomas, J. A. (1935). The coelacanth fishes from Madagascar. Geological Magazine, 72(5), 213–227.CrossRefGoogle Scholar
  85. Moy-Thomas, J. A., & Westoll, T. S. (1935). On the Permian coelacanth, Coelacanthus granulatus, Ag. Geological Magazine, 72(10), 446–457.CrossRefGoogle Scholar
  86. Müller, J. (1845). Ueber den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische. Archiv für Naturgeschichte, 11(1–2), 91–141.Google Scholar
  87. Mutter, R. J., Cartanyà, J., & Basaraba, S. A. U. (2008). New evidence of Saurichthys from the Lower Triassic with an evaluation of early saurichthyid diversity. In G. Arratria, H.-P. Schultze, & M. V. H. Wilson (Eds.), Mesozoic fishes 4, homology and phylogeny (pp. 103–127). München: Dr. Friedrich Pfeil.Google Scholar
  88. Neuman, A. G. (2015). Fishes from the Lower Triassic portion of the Sulphur Mountain Formation in Alberta, Canada: geological context and taxonomic composition. Canadian Journal of Earth Sciences, 52(8), 557–568.CrossRefGoogle Scholar
  89. Neuman, A. G., & Mutter, R. J. (2005). Helmolepis cyphognathus, sp. nov., a new platysiagid actinopterygian from the Lower Triassic Sulphur Mountain Formation (British Columbia, Canada). Canadian Journal of Earth Sciences, 42, 25–36.CrossRefGoogle Scholar
  90. Newberry, J. S. (1856). Description of several new genera and species of fossil fishes, from the Carboniferous strata of Ohio. Proceedings of the Academy of Natural Sciences of Philadelphia, 8, 96–100.Google Scholar
  91. Nielsen, E. (1936). Some few preliminary remarks on Triassic Fishes from East Greenland. Meddelelser om Grønland, 112(3), 1–55.Google Scholar
  92. Olsen, P. E. (1984). The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationships of holostean fishes. Journal of Vertebrate Paleontology, 4(3), 481–499.CrossRefGoogle Scholar
  93. Ovtcharova, M., Goudemand, N., Hammer, Ø., Guodun, K., Cordey, F., Galfetti, T., et al. (2015). Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: the Early-Middle Triassic boundary (South China). Earth Science Reviews, 146, 65–76.CrossRefGoogle Scholar
  94. Owen, R. (1860). Palaeontology or a systematic summary of extinct animals and their geological relations. Edinburgh: A & C Black.CrossRefGoogle Scholar
  95. Patterson, C. (1973). Interrelationships of holosteans. In P. H. Greenwood, R. S. Miles, & C. Patterson (Eds.), Interrelationships of fishes (pp. 233–305). London: Academic Press.Google Scholar
  96. Patterson, C. (1975). The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philosophical Transactions of the Royal Society of London B, 269(899), 275–579.CrossRefGoogle Scholar
  97. Patterson, C. (1982). Morphology and interrelationships of primitive actinopterygian fishes. American Zoologist, 22(2), 241–259.CrossRefGoogle Scholar
  98. Piveteau, J. (1929). Sur un type de poisson fossile provenant du nord de Madagascar. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 189, 1017–1019.Google Scholar
  99. Piveteau, J. (1934). Paléontologie de Madagascar XXI. — Les poissons du Trias inférieur. Contribution à l’étude des actinoptérygiens. Annales de Paleontologie, 23, 83–178.Google Scholar
  100. Piveteau, J. (1939–1940). Paléontologie de Madagascar XXIV. Nouvelles recherches sur les poissons du Trias inférieur. Annales de Paleontologie, 28, 71–88Google Scholar
  101. Prasad, G. V. R., Singh, K., Parmar, V., Goswami, A., & Sudan, C. S. (2008). Hybodont shark teeth from the continental Upper Triassic deposits of India. In G. Arratria, H.-P. Schultze, & M. V. H. Wilson (Eds.), Mesozoic fishes 4, homology and phylogeny (pp. 413–432). München: Dr. Friedrich Pfeil.Google Scholar
  102. Priem, F. (1924). Paléontologie de Madagascar XII. Les poissons fossiles. Annales de Paléontologie, 13, 107–132.Google Scholar
  103. Regan, C. T. (1923). The skeleton of Lepidosteus, with remarks on the origin and evolution of the lower neopterygian fishes. Proceedings of the Zoological Society of London, 93(2), 445–461.CrossRefGoogle Scholar
  104. Reis, O. M. (1888). Die Coelacanthinen, mit besonderer Berücksichtigung der im Weissen Jura Bayerns vorkommenden Gattungen. Palaeontographica, 35, l–94.Google Scholar
  105. Reis, O. M. (1892). Zur Osteologie der Coelacanthinen. I. Theil (Rumpfskelet, Knochen des Schädels und der Wangen, Kiemenbogenskelet, Schultergürtel, Becken, Integument und innere Organe). Inaugural-Dissertation, K. Ludwigs-Maximilians-Universität zu München.Google Scholar
  106. Romano, C., Kogan, I., Jenks, J., Jerjen, I., & Brinkmann, W. (2012). Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bulletin of Geosciences, 87(3), 543–570.CrossRefGoogle Scholar
  107. Romano, C., Koot, M. B., Kogan, I., Brayard, A., Minikh, A. V., Brinkmann, W., et al. (2014a). Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews. doi: 10.1111/brv.12161.Google Scholar
  108. Romano, C., Kriwet, J., Baal, C., & Brinkmann, W. (2014b). Recovery from the Late Permian mass extinction: new insights from a neglected Early Triassic fish fauna from the Salt Range (Pakistan, Neotethys realm). In: 74th annual meeting of the Society of Vertebrate Paleontology, Berlin, Meeting Program and Abstracts, 216.Google Scholar
  109. Romer, A. S. (1955). Herpetichthyes, amphibioidei, choanichthyes or sarcopterygii? Nature, 176, 126.CrossRefGoogle Scholar
  110. Rosen, D. E., Forey, P. L., Gardiner, B. G., & Patterson, C. (1981). Lungfishes, tetrapods, paleontology, and plesiomorphy. Bulletin of the American Museum of Natural History, 167(4), 159–276.Google Scholar
  111. Sahni, A., & Chhabra, N. L. (1976). Microfish remains from certain Triassic sections in the Kashmir and Kumaun Himalayas. In: Proceedings of the VI Indian colloquium on micropaleontology and stratigraphy (pp. 218–224).Google Scholar
  112. Schaeffer, B. (1952). The Triassic coelacanth fish Diplurus, with observations on the evolution of the Coelacanthini. Bulletin of the American Museum of Natural History, 99(2), 25–78.Google Scholar
  113. Schaeffer, B., & Mangus, M. (1976). An Early Triassic fish assemblage from British Columbia. Bulletin of the American Museum of Natural History, 156(5), 127–216.Google Scholar
  114. Scheyer, T. M., Romano, C., Jenks, J., & Bucher, H. (2014). Early Triassic marine biotic recovery: the predators’ perspective. PLoS ONE, 9(3), e88987.CrossRefGoogle Scholar
  115. Schultze, H.-P. (1993). Patterns of diversity in the skulls of jawed fishes. In J. Hanken & B. K. Hall (Eds.), The skull 2, patterns of structural and systematic diversity (pp. 189–254). Chicago: University of Chicago Press.Google Scholar
  116. Schwimmer, D. R., Stewart, J. D., & Williams, G. D. (1994). Giant fossil coelacanths of the Late Cretaceous in the eastern United States. Geology, 22(6), 503–506.CrossRefGoogle Scholar
  117. Smith, J. L. B. (1939). A living fish of Mesozoic type. Nature, 143, 455–456.CrossRefGoogle Scholar
  118. Srivastava, J. P., & Mehrotra, D. K. (1986). Microfish remains from the Triassics of Kashmir Himalaya. Records of the Geologcal Survey of India, 113(8), 91–99.Google Scholar
  119. Stensiö, E. (1921). Triassic fishes from Spitzbergen 1. Wien: Adolf Holzhausen.Google Scholar
  120. Stensiö, E. (1922). Über zwei Coelacanthiden aus dem Oberdevon von Wildungen. Paläontologische Zeitschrift, 4(2–3), 167–210.CrossRefGoogle Scholar
  121. Stensiö, E. (1925). Triassic fishes from Spitzbergen 2. Kungliga Svenska Vetenskapsakademiens Handlingar, Tredje Serien, 2(1), 1–261.Google Scholar
  122. Stensiö, E. (1932). Triassic fishes from East Greenland 1–2. Meddelelser om Grønland, 83(3), 1–305.Google Scholar
  123. Stensiö, E. (1937). On the Devonian coelacanthids of Germany with special reference to the dermal skeleton. Kungliga Svenska Vetenskapsakademiens Handlingar, Tredje Serien, 16(4), 1–56.Google Scholar
  124. Tintori, A. (1992). Fish taphonomy and Triassic anoxic basins from the Alps: a case history. Rivista Italiana di Paleontologia e Stratigrafia, 97(2–3), 393–408.Google Scholar
  125. Tintori, A., Hitij, T., Jiang, D.-Y., Lombardo, C., & Sun, Z.-Y. (2014). Triassic actinopterygian fishes: The recovery after the end-Permian crisis. Integrative Zoology, 9(4), 394–411.CrossRefGoogle Scholar
  126. Tong, J., Zhou, X., Erwin, D. H., Zuo, J., & Zhao, L. (2006). Fossil fishes from the Lower Triassic of Majiashan, Chaohu, Anhui Province, China. Journal of Paleontology, 80(1), 146–161.CrossRefGoogle Scholar
  127. Tozer, E. T. (1965). Lower Triassic stages and ammonoid zones of Arctic Canada. Paper of the Geological Survey of Canada, 65, 1–14.Google Scholar
  128. Uyeno, T. (1978). On some Lower Triassic fishes from Ankilokara, Madagascar. Bulletin of the National Science Museum, Series C (Geology & Paleontology), 4(4), 193–198.Google Scholar
  129. von Koenen, A. (1895). Über einige Fischreste des norddeutschen und böhmischen Devons. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Gottingen, 40, 1–37.Google Scholar
  130. Waagen, W. (1895). Salt-Range fossils 2. Fossils from the Ceratite Formation, Part I: Pisces—Ammonoidea. Memoir of the Geological Survey of India, Palaeontologia Indica, Series 13, 2, 1–323.Google Scholar
  131. Ware, D., Jenks, J. F., Hautmann, M., & Bucher, H. (2011). Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography. Swiss Journal of Geosciences, 104(1), 161–181.CrossRefGoogle Scholar
  132. Ware, D., Bucher, H., Brayard, A., Schneebeli-Hermann, E., & Brühwiler, T. (2015). High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2015.09.013.Google Scholar
  133. Ware, D., Bucher, H., Brühwiler, T., & Krystyn, L. (in production a). Dienerian (Early Triassic) ammonoids from Spiti (Himachal Pradesh, India). Fossil & Strata. Google Scholar
  134. Ware, D., Bucher, H., Brühwiler, T., Schneebeli-Hermann, E., Hochuli, P.A., Roohi, G., et al. (in production b). Griesbachian and Dienerian (Early Triassic) ammonoids from the Salt Range, Pakistan. Fossil & Strata.Google Scholar
  135. Xu, G.-H., Zhao, L.-J., & Coates, M. I. (2014). The oldest ionoscopiform from China sheds new light on the early evolution of halecomorph fishes. Biology Letters, 10(5), 20140204.CrossRefGoogle Scholar
  136. Zhang, M. (1976). A new species of helicoprionid shark from Xizang. Scientia Geologica Sinica, 1976(4), 332–336.Google Scholar
  137. zu Münster, G. (1834). Mittheilungen an Professor Bronn gerichtet. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1834, 538–542.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2015

Authors and Affiliations

  • Carlo Romano
    • 1
    Email author
  • David Ware
    • 1
  • Thomas Brühwiler
    • 1
  • Hugo Bucher
    • 1
  • Winand Brinkmann
    • 1
  1. 1.Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland

Personalised recommendations