Swiss Journal of Palaeontology

, Volume 132, Issue 2, pp 141–219 | Cite as

Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography

  • Arnaud Brayard
  • Kevin G. Bylund
  • James F. Jenks
  • Daniel A. Stephen
  • Nicolas Olivier
  • Gilles Escarguel
  • Emmanuel Fara
  • Emmanuelle Vennin
Article

Abstract

Intensive sampling of the lower portion of the Thaynes and Moenkopi Groups (Lower Triassic) at separate localities within the Confusion Range, Pahvant Range, Mineral Mountains, Star Range, Kanarraville, Cedar City, Torrey and San Rafael Swell areas (mainly central and southern Utah, USA) leads to the recognition of a new key regional Smithian ammonoid succession. The new biostratigraphical sequence, which is more precise than the long-recognized Meekocerasgracilitatis and Anasibiriteskingianus Zones, comprises twelve subdivisions, thus resulting in a sequence with much higher resolution that can be correlated not only with other western USA sites, but also with major worldwide localities as well. Middle and late Smithian faunas contain many taxa with wide geographic distribution, thus enabling long-distance correlation with faunal successions from other regions (e.g., British Columbia, Canadian Arctic, South China, Spiti and Oman). New assemblages from the lowermost beds are the least diversified and poorest preserved; they represent the earliest early/middle Smithian ammonoid faunas reported from the western North American basin. They highlight (a) the sudden Smithian advancement of the marine transgression within this epicontinental sea, (b) that this event is diachronous, and (c) that the paleotopography of the basin most likely was highly irregular. The newly obtained ammonoid succession also allows us to date and follow the transgression from the northern and central part of the basin to the southwesternmost and southeasternmost parts, which were reached during the late Smithian (Anasibiriteskingianus beds). In addition, we briefly discuss the now-limited previous regional biozonation in the light of these new results. One new genus (Minersvillites) and nine new species (Kashmirites utahensis, Kashmirites confusionensis, Kashmirites stepheni, ?Xiaoqiaoceras americanum, Minersvillites farai, Inyoites beaverensis, Meekoceras olivieri, Meekoceras millardense, Vercherites undulatus) are also described.

Keywords

Ammonoids Early Triassic Smithian Utah Biostratigraphy Paleogeography New genus and species 

References

  1. Arkell, W. J., Kummel, B., & Wright, C. W. (1957). Mesozoic Ammonoidea. In R. C. Moore (Ed.), Treatise on invertebrate paleontology. Part L: Mollusca 4. Cephalopoda—Ammonoidea (pp. L80–L465). Lawrence: University of Kansas Press & Geological Society of America.Google Scholar
  2. Bacon, C. S. J. (1948). Geology of the confusion range, West-Central Utah. Bulletin of the Geological Society of America, 59, 1027–1052.CrossRefGoogle Scholar
  3. Baetcke, G. B. (1969). Stratigraphy of the Star Range and reconnaissance of three selected mines. Triassic System. Thesis, University of Utah.Google Scholar
  4. Blakey, R. C. (1973). Stratigraphy and origin of the Moenkopi Formation (Triassic) of Southeastern Utah. The Mountain Geologist, 10, 1–17.Google Scholar
  5. Blakey, R. C. (1974). Stratigraphic and depositional analysis of the Moenkopi Formation, Southeastern Utah. Utah Geological and Mineral Survey Bulletin, 104, 1–81.Google Scholar
  6. Blakey, R. C. (1977). Petroliferous lithosomes in the Moenkopi Formation, Southern Utah. Utah Geology, 4, 67–84.Google Scholar
  7. Blakey, R. C. (1979). Oil impregnated carbonate rocks of the Timpoweap Member, Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona. Utah Geology, 6, 45–54.Google Scholar
  8. Brayard, A., & Bucher, H. (2008). Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (South China): Taxonomy and biochronology. Fossils and Strata, 55, 1–179.Google Scholar
  9. Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., & Galfetti, T. (2006). The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 374–395.CrossRefGoogle Scholar
  10. Brayard, A., Bucher, H., Brühwiler, T., Galfetti, T., Goudemand, N., Guodun, K., et al. (2007a). Proharpoceras Chao: A new ammonoid lineage surviving the end-Permian mass extinction. Lethaia, 40, 175–181.CrossRefGoogle Scholar
  11. Brayard, A., Escarguel, G., & Bucher, H. (2007b). The biogeography of Early Triassic ammonoid faunas: Clusters, gradients and networks. Geobios, 40, 749–765.CrossRefGoogle Scholar
  12. Brayard, A., Brühwiler, T., Bucher, H., & Jenks, J. (2009a). Guodunites, a low-palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology, 52, 471–481.CrossRefGoogle Scholar
  13. Brayard, A., Escarguel, G., Bucher, H., & Brühwiler, T. (2009b). Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: Paleoceanographic and paleogeographic implications. Journal of Asian Earth Sciences, 36, 420–433.CrossRefGoogle Scholar
  14. Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Bruhwiler, T., Goudemand, N., et al. (2009c). Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction. Science, 325, 1118–1121.CrossRefGoogle Scholar
  15. Brayard, A., Nützel, A., Stephen, D. A., Bylund, K. G., Jenks, J., & Bucher, H. (2010). Gastropod evidence against the Early Triassic Lilliput effect. Geology, 38, 147–150.CrossRefGoogle Scholar
  16. Brayard, A., Nützel, A., Kaim, A., Escarguel, G., Hautmann, M., Stephen, D. A., et al. (2011a). Gastropod evidence against the Early Triassic Lilliput effect: Reply. Geology, 39, e233.CrossRefGoogle Scholar
  17. Brayard, A., Vennin, E., Olivier, N., Bylund, K. G., Jenks, J., Stephen, D. A., et al. (2011b). Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience, 4, 693–697.CrossRefGoogle Scholar
  18. Brühwiler, T., Bucher, H., Brayard, A., & Goudemand, N. (2010a). High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Smithian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 491–501.CrossRefGoogle Scholar
  19. Brühwiler, T., Bucher, H., & Goudemand, N. (2010b). Smithian (Early Triassic) ammonoids from Tulong, South Tibet. Geobios, 43, 403–431.CrossRefGoogle Scholar
  20. Brühwiler, T., Ware, D., Bucher, H., Krystyn, L., & Goudemand, N. (2010c). New Early Triassic ammonoid faunas from the Dienerian/Smithian boundary beds at the Induan/Olenekian GSSP candidate at Mud (Spiti, Northern India). Journal of Asian Earth Sciences, 39, 724–739.CrossRefGoogle Scholar
  21. Brühwiler, T., Bucher, H., Roohi, G., Yaseen, A., & Rehman, K. (2011). A new Early Smithian ammonoid fauna from the Salt Range (Pakistan). Swiss Journal of Palaeontology, 130, 187–201.CrossRefGoogle Scholar
  22. Brühwiler, T., Bucher, H., Goudemand, N., & Galfetti, T. (2012a). Smithian (Early Triassic) ammonoid faunas from Exotic Blocks from Oman: Taxonomy and biochronology. Palaeontographica Abteilung A, 296, 3–107.Google Scholar
  23. Brühwiler, T., Bucher, H., & Krystyn, L. (2012b). Middle and Late Smithian (Early Triassic) ammonoids from Spiti (India). Special Papers in Palaeontology, 88, 115–174.Google Scholar
  24. Brühwiler, T., Bucher, H., Ware, D., Hermann, E., Hochuli, P. A., Roohi, G., et al. (2012c). Smithian (Early Triassic) ammonoids from the Salt Range. Special Papers in Palaeontology, 88, 1–114.Google Scholar
  25. Carr, T. R., & Paull, R. K. (1983). Early Triassic stratigraphy and paleogeography of the Cordilleran miogeocline. In A. Reynolds & E. D. Dolly (Eds.), Mesozoic paleogeography of the West-Central United States (pp. 39–55). Denver: Society of Economic Paleontologists and Mineralogists, Pacific Section.Google Scholar
  26. Chao, K. (1959). Lower Triassic ammonoids from Western Kwangsi. China: Peking Science Press.Google Scholar
  27. Collignon, M. (1933). Paléontologie de Madagascar XX—Les céphalopodes du Trias inférieur. Annales de Paléontologie, 1213, 151–162 & 1–43.Google Scholar
  28. Collignon, M. (1973). Ammonites du Trias inférieur et moyen d’Afghanistan. Annales de Paléontologie, 59, 127–163.Google Scholar
  29. Collinson, J. W., & Hasenmueller, W. A. (1978). Early Triassic paleogeography and biostratigraphy of the Cordilleran miogeosyncline. In A. Reynolds & E. D. Dolly (Eds.), Mesozoic paleogeography of the West-Central United States (pp. 175–186). Denver: Society of Economic Paleontologists and Mineralogists, Pacific Section.Google Scholar
  30. Collinson, J. W., Kendall, C. G. S. C., & Marcantel, J. B. (1976). Permian–Triassic boundary in eastern Nevada and west-central Utah. Bulletin of the Geological Society of America, 87, 821–824.CrossRefGoogle Scholar
  31. Crosby, G. W. (1959). Geology of the South Pavant Range, Millard and Sevier Counties, Utah. Brigham Young University Research Series, 6, 1–59.Google Scholar
  32. Dagys, A. S., & Ermakova, S. P. (1990). Early Olenekian ammonoids of Siberia. Moskow: Nauka.Google Scholar
  33. Dagys, A. S., & Weitschat, W. (1993). Intraspecific variation in Boreal Triassic ammonoids. Géobios, 26, 107–109.CrossRefGoogle Scholar
  34. Davis, R. L. (1983). Geology of the Dog Valley-Red Ridge Area, Southern Pavant Mountains, Millard County, Utah. Brigham Young University Geology Studies, 30, 19–36.Google Scholar
  35. Dean, J. S. (1981). Carbonate petrology and depositional environments of the Sinbad Limestone Member of the Moenkopi Formation in the Teasdale Dome Area, Wayne and Garfield Counties, Utah. Brigham Young University Geology Studies, 28, 19–51.Google Scholar
  36. Dickinson, W. R. (2006). Geotectonic evolution of the Great Basin. Geosphere, 2, 353–368.CrossRefGoogle Scholar
  37. Diener, C. (1897). Part I: The Cephalopoda of the lower Trias. Palaeontologia Indica. Ser. XV, Himalayan fossils, 2, 1–181.Google Scholar
  38. Ermakova, S. P. (2002). Zonal standard of the Boreal Lower Triassic. Moscow: Nauka.Google Scholar
  39. Fraiser, M. L., & Bottjer, D. J. (2004). The non-actualistic Early Triassic gastropod fauna: A case study of the Lower Triassic Sinbad Limestone Member. Palaios, 19, 259–275.CrossRefGoogle Scholar
  40. Frebold, H. (1930). Die altersstellung des fischhorizontes, des grippianiveaus und des unteren saurierhorizontes in Spitzbergen. Skrifter om Svalbard og Ishavet, 28, 1–36.Google Scholar
  41. Galfetti, T., Bucher, H., Brayard, A., Hochuli, P. A., Weissert, H., Guodun, K., et al. (2007a). Late Early Triassic climate change: Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 394–411.CrossRefGoogle Scholar
  42. Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Bruhwiler, T., et al. (2007b). Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters, 258, 593–604.CrossRefGoogle Scholar
  43. Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., & Vigran, J. O. (2007c). The Smithian/Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology, 35, 291–294.CrossRefGoogle Scholar
  44. Gardner, G. E., & Mapes, R. H. (2000). The relationships of color patterns and habitat for Lower Triassic ammonoids from Crittenden Springs, Elko county, Nevada. Revue de Paléobiologie, 8, 109–122.Google Scholar
  45. Gilluly, J., & Reeside, J. B. J. (1928). Sedimentary rocks of the San Rafael Swell and some adjacent areas in eastern Utah. USGS Professional Paper, 150-D, 61–110.Google Scholar
  46. Goodspeed, T. H., & Lucas, S. G. (2007). Stratigraphy, sedimentology, and sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, Utah. New Mexico Museum of Natural History and Science Bulletin, 40, 91–101.Google Scholar
  47. Guex, J., Hungerbühler, A., Jenks, J., O’Dogherty, L., Atudorei, V., Taylor, D. G., et al. (2010). Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie de Lausanne, 49, 1–81.Google Scholar
  48. Hautmann, M., & Nützel, A. (2005). First record of a heterodont bivalve (Mollusca) from the Early Triassic: Palaeocological significance and implications for the “Lazarus problem”. Palaeontology, 48, 1131–1138.CrossRefGoogle Scholar
  49. Hermann, E., Hochuli, P. A., Bucher, H., Brühwiler, T., Hautmann, M., Ware, D., et al. (2011). Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Research, 20, 630–637.CrossRefGoogle Scholar
  50. Hintze, L. F., & Davis, F. D. (2003). Geology of Millard County, Utah. Utah Geological Survey Bulletin, 133, 117–121.Google Scholar
  51. Hofmann, R., Hautmann, M., Wasmer, M., & Bucher, H. (2013). Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontologica Polonica, 58, 149–173.Google Scholar
  52. Hose, R. K., & Repenning, C. A. (1959). Stratigraphy of Pennsylvanian, Permian, and Lower Triassic rocks of Confusion Range, west-central Utah. Bulletin of the American Association of Petroleum Geologists, 43, 2167–2196.Google Scholar
  53. Hyatt, A., & Smith, J. P. (1905). The Triassic cephalopod genera of America. USGS Professional Paper, 40, 1–394.Google Scholar
  54. Jenks, J. (2007). Smithian (Early Triassic) ammonoid biostratigraphy at Crittenden Springs, Elko County, Nevada and a new ammonoid from the Meekoceras gracilitatis Zone. New Mexico Museum of Natural History and Science Bulletin, 40, 81–90.Google Scholar
  55. Jenks, J., Brayard, A., Brühwiler, T., & Bucher, H. (2010). New Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: Implications for taxonomy, biostratigraphy and biogeography. New Mexico Museum of Natural History and Science Bulletin, 48, 1–41.Google Scholar
  56. Jenks, J., Guex, J., Hungerbühler, A., Taylor, D. G., & Bucher, H. (2013). Ammonoid biostratigraphy of the Early Spathian Columbites parisianus Zone (Early Triassic) at Bear Lake Hot Springs, Idaho. New Mexico Museum of Natural History and Science Bulletin, 61, 268–283.Google Scholar
  57. Kaim, A., Nützel, A., Bucher, H., Brühwiler, T., & Goudemand, N. (2010). Early Triassic (Late Griesbachian) gastropods from South China (Shanggan, Guangxi). Swiss Journal of Geosciences, 103, 121–128.CrossRefGoogle Scholar
  58. Kennedy, W. J., & Cobban, W. A. (1976). Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology, 17, 1–94.Google Scholar
  59. Klug, C., Brühwiler, T., Korn, D., Schweigert, G., Brayard, A., & Tilsley, J. (2007). Ammonoid shell structures of primary organic composition. Palaeontology, 50, 1463–1478.CrossRefGoogle Scholar
  60. Korchinskaya, M. V. (1982). Explanatory note on the biostratigraphic scheme of the Mesozoic (Trias) of Spitsbergen (pp. 40–99). PGO Sevmorgeologia: USSR Ministry of Geology.Google Scholar
  61. Krafft, Av, & Diener, C. (1909). Lower Triassic Cephalopoda from Spiti, Malla Johar, and Byans. Palaeontologia Indica, 6, 1–186.Google Scholar
  62. Kuenzi, W. D. (1965). Early Triassic (Scythian) ammonoids from Northeastern Washington. Journal of Paleontology, 39, 365–378.Google Scholar
  63. Kummel, B., & Erben, H. K. (1968). Lower and Middle Triassic cephalopods from Afghanistan. Palaeontographica, 129, 95–148.Google Scholar
  64. Kummel, B., & Sakagami, S. (1960). Mid-Scythian ammonites from Iwai formation, Japan. Breviora, Museum of Comparative Zoology, 126, 1–13.Google Scholar
  65. Kummel, B., & Steele, G. (1962). Ammonites from the Meekoceras gracilitatus zone at Crittenden Spring, Elko County, Nevada. Journal of Paleontology, 36, 638–703.Google Scholar
  66. Lindström, G. (1865). Om Trias och Juraforsteningar fran Spetsbergen. Svenska Vetenskap-Akadamien Handlingar, 6, 1–20.Google Scholar
  67. Lucas, S. G., Goodspeed, T. H., & Estep, J. W. (2007a). Ammonoid biostratigraphy of the Lower Triassic Sinbad Formation, East-Central Utah. New Mexico Museum of Natural History and Science Bulletin, 40, 103–108.Google Scholar
  68. Lucas, S. G., Krainer, K., & Milner, A. R. (2007b). The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. New Mexico Museum of Natural History and Science Bulletin, 40, 109–117.Google Scholar
  69. Markevich, P. V., & Zakharov, Y. D. (2004). Triassic and Jurassic of the Sikhote-Alin—Book 1: Terrigenous assemblage. Dalnauka: Vladivostok.Google Scholar
  70. Mathews, A. A. L. (1929). The Lower Triassic cephalopod fauna of the Fort Douglas area, Utah. Walker Museum Memoirs, 1, 1–46.Google Scholar
  71. McRoberts, C. A. (2010). Biochronology of Triassic bivalves. In S. G. Lucas (Ed.), The Triassic timescale (pp. 201–219). London: The Geological Society of London, Special Publication, 334.Google Scholar
  72. Monnet, C., & Bucher, H. (2005). New Middle and Late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): Taxonomy and biochronology. Fossils and Strata, 52, 1–121.Google Scholar
  73. Monnet, C., Bucher, H., Wasmer, M., & Guex, J. (2010). Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): Morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology, 53, 961–996.CrossRefGoogle Scholar
  74. Newell, N. D. (1948). Key Permian section, Confusion Range, Western Utah. Bulletin of the Geological Society of America, 59, 1053–1058.CrossRefGoogle Scholar
  75. Nichols, K. M., & Silberling, N. J. (1979). Early Triassic (Smithian) ammonites of Paleoequatorial affinity from the Chulitna terrane, South-central Alaska. Geological Survey Professional Paper, 1121-B, B1–B5.Google Scholar
  76. Nielson, R. L. (1991). Petrology, sedimentology and stratigraphic implications of the Rock Canyon conglomerate, southwestern Utah. Utah Geological Survey, Miscellaneous Publication, 91, 1–65.Google Scholar
  77. Noetling, F. (1905). Die asiatische Trias. In F. Frech (Ed.), Lethaea geognostica (Vol. 1, pp. 107–221). Stuttgart: Verlag der E. Schweizerbart’schen Verlagsbuchhandlung (E. Nägele).Google Scholar
  78. Nützel, A. (2005). A new Early Triassic gastropod genus and the recovery of gastropods from the Permian/Triassic extinction. Acta Palaeontologica Polonica, 50, 19–24.Google Scholar
  79. Okuneva, T. M. (1990). Triassic biostratigraphy of southern regions of the East USSR without the Primorye territory. In Y. D. Zakharov, G. V. Belyaeva & A. P. Nikitina (Eds.), New data on Palaeozoic and Mesozoic biostratigraphy of the south Far East (pp. 125–136). Vladivostok: Far Eastern Branch of the USSR Academy of Sciences.Google Scholar
  80. Orchard, M. J. (2007). Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 93–117.CrossRefGoogle Scholar
  81. Paull, R. A., & Paull, R. K. (1993). Interpretation of Early Triassic nonmarine–marine relations, Utah, U.S.A. New Mexico Museum of Natural History and Science Bulletin, 3, 403–409.Google Scholar
  82. Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., et al. (2013). Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience, 6, 57–60.CrossRefGoogle Scholar
  83. Runnegar, B. (1969). A Lower Triassic ammonoid fauna from southeast Queensland. Journal of Paleontology, 43, 818–828.Google Scholar
  84. Shevyrev, A. A. (1968). Triassic Ammonoidea from the southern part of the USSR. Moscow: Nauka.Google Scholar
  85. Shevyrev, A. A. (1995). Triassic ammonites of northwestern Caucasus. Trudy Paleontologiceskogo Instituta (Akademija Nauk SSR), 264, 1–174.Google Scholar
  86. Shigeta, Y., & Zakharov, Y. D. (2009). Systematic palaeontology—cephalopods. In Y. Shigeta, Y. D. Zakharov, H. Maeda, & A. M. Popov (Eds.), The Lower Triassic system in the Abrek Bay area, South Primorye, Russia (pp. 44–140). Tokyo: National Museum of Nature and Science.Google Scholar
  87. Silberling, N. J., & Tozer, E. T. (1968). Biostratigraphic classification of the marine Triassic in North America. Geological Society of America Special Paper, 110, 1–63.Google Scholar
  88. Smith, J. P. (1927). Upper Triassic marine invertebrate faunas of North America. USGS Professional Paper, 141, 1–262.Google Scholar
  89. Smith, J. P. (1932). Lower Triassic ammonoids of North America. USGS Professional Paper, 167, 1–199.Google Scholar
  90. Smith, J. F. J., Huff, L. C., Hinrichs, E. N., & Luedke, R. G. (1963). Geology of the Capitol Reef area, Wayne and Garfield counties, Utah. USGS Professional Paper, 363, 1–102.Google Scholar
  91. Spath, L. F. (1934). Part 4: The Ammonoidea of the Trias, Catalogue of the fossil cephalopoda in the British Museum (Natural History). London: The Trustees of the British Museum.Google Scholar
  92. Stephen, D. A., Bylund, K. G., Bybee, P. J., & Ream, W. J. (2010). Ammonoid beds in the Lower Triassic Thaynes Formation of western Utah, USA. In K. Tanabe, Y. Shigeta, T. Sasaki, & H. Hirano (Eds.), Cephalopods—present and past (pp. 243–252). Tokyo: Tokai University Press.Google Scholar
  93. Stewart, J. H., Poole, F. G., & Wilson, R. F. (1972). Stratigraphy and origin of the Triassic Moenkopi formation and related strata in the Colorado Plateau region. Geological Survey Professional Paper, 691, 1–195.Google Scholar
  94. Tozer, E. T. (1961). The sequence of marine Triassic faunas in Western Canada. Geologic Survey of Canada, 616, 1–20.Google Scholar
  95. Tozer, E. T. (1981). Triassic Ammonoidea: Classification, evolution and relationship with Permian and Jurassic forms. In M. R. House & J. R. Senior (Eds.), The Ammonoidea (pp. 65–100). London: The systematics association.Google Scholar
  96. Tozer, E. T. (1994). Canadian Triassic ammonoid faunas. Geologic Survey of Canada Bulletin, 467, 1–663.Google Scholar
  97. Vu Khuc. (1984). Triassic ammonoids in Vietnam. Geoinform and Geodata Institute: Hanoi.Google Scholar
  98. Waagen, W. (1895). Salt Range fossils. Vol 2: Fossils from the Ceratite Formation. Palaeontologia Indica, 13, 1–323.Google Scholar
  99. Ware, D., Jenks, J., Hautmann, M., & Bucher, H. (2011). Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography. Swiss Journal of Geosciences, 104, 161–181.CrossRefGoogle Scholar
  100. Weitschat, W. (2008). Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the Early Triassic (Spathian) of Spitzbergen. Polar Research, 27, 292–297.CrossRefGoogle Scholar
  101. Weitschat, W., & Lehmann, U. (1978). Biostratigraphy of the uppermost part of the Smithian stage (Lower Triassic) at the Botneheia, W-Spitsbergen. Mitteilungen aus dem Geologischen, Paläontologisches Institut, Universität Hamburg, 48, 85–100.Google Scholar
  102. Welter, O. A. (1922). Die ammoniten der Unteren Trias von Timor. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Erwin Nägele).Google Scholar
  103. Westermann, G. E. G. (1966). Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 124, 289–312.Google Scholar
  104. White, C. A. (1879). Fossils of the Jura-Trias of southeastern Idaho. Bulletin of the United States Geological and Geographical Survey of the Territories, 5, 105–117.Google Scholar
  105. Zakharov, Y. D. (1968). Biostratiraphiya i am onoidei nizhnego triasa Yuzhnogo Primorya (Lower Triassic biostratigraphy and ammonoids of South Primorye). Moskva: Nauka.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2013

Authors and Affiliations

  • Arnaud Brayard
    • 1
  • Kevin G. Bylund
    • 2
  • James F. Jenks
    • 3
  • Daniel A. Stephen
    • 4
  • Nicolas Olivier
    • 5
  • Gilles Escarguel
    • 5
  • Emmanuel Fara
    • 1
  • Emmanuelle Vennin
    • 1
  1. 1.UMR CNRS 6282 BiogéosciencesUniversité de BourgogneDijonFrance
  2. 2.Spanish ForkUSA
  3. 3.West JordanUSA
  4. 4.Department of Earth ScienceUtah Valley UniversityOremUSA
  5. 5.Laboratoire de Géologie de Lyon: Terre, Planètes, EnvironnementUMR CNRS 5276, Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations