Swiss Journal of Palaeontology

, Volume 132, Issue 1, pp 5–21 | Cite as

The pitfalls of extrapolating modern depth ranges to fossil assemblages: new insights from Middle Jurassic brittle stars (Echinodermata: Ophiuroidea) from Switzerland



Depth reconstruction based on the extrapolation to fossil assemblages of present-day depth ranges of closely related groups is one of the most widely used approaches in palaeobathymetry. Here, we assess the ophiuroid fauna of the Bajocian to Bathonian (Middle Jurassic) Hauptrogenstein Formation and coeval formations in Switzerland with respect to the depth ranges of extant members of the groups identified. In addition to previously known taxa, we describe three new species, one assignable to the extant genus Ophiotholia within the family Ophiomycetidae (resurrected herein), and two belonging to new genera within the family Ophiacanthidae. The Hauptrogenstein ophiuroid fauna is shown to display a striking similarity to modern bathyal brittle star assemblages. In combination with taphonomic evidence of the autochthonous nature of the ophiuroid occurrences, the direct extrapolation of present-day depth ranges, as performed in various previous studies, would imply the Hauptrogenstein Formation to have been deposited in a bathyal setting. This, however, is in stark contrast with the generally accepted, sedimentology-based concept of this unit as a very shallow, high-energy carbonate platform deposit. Evidently, direct extrapolation of modern depth distribution patterns fails to provide a reliable palaeobathymetrical assessment here. In this respect, the case of the Hauptrogenstein ophiuroid fauna serves as a remarkable example to stress the pitfalls of assemblage-based palaeodepth estimates: (1) depth distribution patterns might not be controlled by water depth, or not even by a factor directly related to depth, (2) habitat preferences of a group might have changed through time without being reflected by morphological modifications and (3) shifts in depth ranges might occur due to the rise or extinction of groups interacting with the organism in question. Thus, extrapolation of present-day depth ranges to ancient communities can only produce reliable palaeodepth estimates if there is a mechanistic explanation why organisms are confined to a particular depth.


Ophiomycetidae Ophiacanthidae Ophiuroids Palaeobathymetry Taxonomy 


  1. Allen, J. R. L. (1967). Depth indicators of clastic sequences. Marine Geology, 5, 429–446.CrossRefGoogle Scholar
  2. Ausich, W.I. (2001). Echinoderm taphonomy. In M. Jangoux & J.M. Lawrence (Eds.), Echinoderm studies 6 (pp. 171–227). Rotterdam: Balkema.Google Scholar
  3. Bathurst, R. G. C. (1967). Depth indicators in sedimentary carbonates. Marine Geology, 5, 447–471.CrossRefGoogle Scholar
  4. Benson, R. H. (1984). Estimating greater paleodepths with ostracods, especially in past thermospheric oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 107–141.CrossRefGoogle Scholar
  5. Boehm, G. (1899). Ein Beitrag zur Kenntnis fossiler Ophiuren. Bericht der Naturforschenden Gesellschaft zu Freiburg i. Br., 4, 232–287.Google Scholar
  6. Boltovskoy, E. (1965). Los foraminiferos recientes. Buenos Aires: Eudeba.Google Scholar
  7. Bourbon, M., De Graciansky, P.-C., & Roux, M. (1980). Indices bathymétriques fournis par les Crinoïdes pédonculés sur le bord de la marge téthysienne (Briançonnais et Subbriançonnais au Jurassique et au Crétacé). Bulletin de la Société géologique de France, 22, 713–718.Google Scholar
  8. Brett, C.E., Moffat, H.A. & Taylor, W.L. (1997). Echinoderm taphonomy, taphofacies and Lagerstätten. In J. A. Water & C. G. Maples (Eds.), Geobiology of Echinoderms. Paleontology Society Papers 3 (pp. 147–190). Pittsbutgh: Carnegie Museum.Google Scholar
  9. Brett, C. E., & Seilacher, A. (1991). Fossil Lagerstätten: a taphonomic consequence of event sedimentation. In G. Einsele, et al. (Eds.), Cycles and Events in Stratigraphy (pp. 283–297). New York: Springer.Google Scholar
  10. Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J. P., & Hantzpergue, P. (2007a). The La Voulte Lagerstätte (Callovian): evidence for a deep water setting from sponge and crinoid communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 250, 216–236.CrossRefGoogle Scholar
  11. Charbonnier, S., Vannier, J., Hantzpergue, P., & Gaillard, C. (2010). Ecological significance of the arthropod fauna from the Jurassic (Callovian) La Voulte Lagerstätte. Acta Palaeontologica Polonica, 55, 111–132.CrossRefGoogle Scholar
  12. Charbonnier, S., Vannier, J., & Riou, B. (2007b). New sea spiders from the Jurassic La Voulte-sur-Rhône Lagerstätte. Proceedings of the Royal Society B, 274, 2555–2561.CrossRefGoogle Scholar
  13. Clark, H. L. (1910). A new ophiuran from the West Indies. Proceedings of the U.S. Museum of Natural History, 37, 665–666.CrossRefGoogle Scholar
  14. Clark, H. L. (1911). North Pacific Ophiurans in the collection of the Unites States National Museum. Bulletin of the United States National Museum, 75, 1–302.CrossRefGoogle Scholar
  15. Clark, H.L. (1915). Catalogue of Recent ophiurans. Memoirs of the Museum of Comparative Zoology, 25, 163–376, 20 pls.Google Scholar
  16. Clark, H. L. (1938). Echinoderms from Australia. An account of collections made in 1929 and 1932. Memoirs of the Museum of Comparative Zoology at Harvard College, 55, 1–597.Google Scholar
  17. Conway, K. W., Krautter, M., Barrie, J. V., & Neuweiler, M. (2001). Hexactinellid sponge reefs on the Canadian continental shelf: a unique „living fossil“. Geoscience Canada, 28, 71–78.Google Scholar
  18. Davis, R. A. (1977). Principles of oceanography. Reading: Addison-Wesley.Google Scholar
  19. de Loriol, P. (1872). Description géologique et paléontologique des étages jurassiques supérieurs de la Haute-Marne. Mémoires de la Société linnéenne de Normandie, 16, 1–542.Google Scholar
  20. Ekdale, A. A. (1988). Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. Palaios, 3, 464–472.CrossRefGoogle Scholar
  21. Fell, H. B. (1960). Synoptic keys to the genera of Ophiuroidea. Zoology Publications from Victoria University of Wellington, 26, 1–44.Google Scholar
  22. Flügel, E. (2004). Microfacies of carbonate rocks. Berlin: Springer.Google Scholar
  23. Funnell, B. M. (1967). Foraminifera and radiolarians as depth indicators in the marine environment. Marine Geology, 5, 333–347.CrossRefGoogle Scholar
  24. Gage, J. D., & Tyler, P. A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
  25. Gale, S. S. (2011). Asteroidea (Echinodermata) from the Oxfordian (Late Jurassic) of Savigna, Département du Jura, France. Swiss Journal of Palaeontology, 130, 69–89.CrossRefGoogle Scholar
  26. Gammon, P. R., James, N. P., & Pisera, A. (2000). Eocene spiculites and spongiolites in southwestern Australia: not deep, not polar, but shallow and warm. Geology, 28, 855–858.CrossRefGoogle Scholar
  27. Gill, G. A., Santantonio, M., & Lathuilière, B. (2004). The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sedimentary Geology, 166, 311–334.CrossRefGoogle Scholar
  28. Glaub, I. (1999). Paleobathymetric reconstructions and fossil microborings. Bulletin of the Geological Society of Denmark, 45, 143–146.Google Scholar
  29. Glaub, I., Golubic, S., Gektidis, M., Radtke, G., & Vogel, K. (2007). Microborings and microbial endoliths: Geological implications. In W. Miller III (Ed.), Trace Fossils (pp. 368–381). Amsterdam: Elsevier.CrossRefGoogle Scholar
  30. Gonzalez, R. (1993). Die Hauptrogenstein-Formation der Nordwestschweiz (mittleres Bajocien bis unteres Bathonien), Unpublished Ph. D. Basel: University of Basel. 190 pp.Google Scholar
  31. Gonzalez, R. (1996). Response of shallow-marine carbonate facies to third-order and high-frequency sea-level fluctuations: Hauptrogenstein Formation, northern Switzerland. Sedimentary Geology, 102, 111–130.CrossRefGoogle Scholar
  32. Gonzalez, R., & Wetzel, A. (1996). Stratigraphy and paleogeography of the Hauptrogenstein and Klingnau formations (middle Bajocian to late Bathonian), northern Switzerland. Eclogae Geologicae Helvetiae, 89, 695–720.Google Scholar
  33. Gray, J. E. (1840). A synopsis of the genera and species of the class Hypostoma (Asterias Linnaeus). Annals of the Magazine of Natural History, 6(175–184), 275–290.Google Scholar
  34. Guille, A. (1981). Echinodermes: Ophiurides. Mémoires ORSTOM, 91, 413–456.Google Scholar
  35. Herring, P. (2002). The biology of the deep ocean. New York: Oxford University Press.Google Scholar
  36. Hess, H. (1960). Ophiurenreste aus dem Malm des Schweizer Juras und des Départements Haut-Rhin. Eclogae Geologicae Helvetiae, 53, 385–421.Google Scholar
  37. Hess, H. (1964). Die Ophiuren des englischen Jura. Eclogae Geologicae Helvetiae, 57, 756–801.Google Scholar
  38. Hess, H. (1966). Mikropaläontologische Untersuchungen an Ophiuren V: Die Ophiuren aus dem Argovien (unteres Ober-Oxford) vom Guldental (Kt. Solothurn) und von Savigna (Dépt. Jura). Eclogae Geologicae Helvetiae, 59, 1025–1063.Google Scholar
  39. Hess, H. (1972). Eine Echinodermen-Fauna aus dem mittleren Dogger des Aargauer Juras. Schweizerische Paläontologische Abhandlungen, 92, 1–87.Google Scholar
  40. Hess, H. (1975). Die Echinodermen des Schweizer Juras. Veröffentlichungen aus dem Naturhistorischen Museums Basel, 8, 1–130.Google Scholar
  41. Hess, H. (2011). Treatise on Invertebrate Paleontology, Part T, Revised, Echinodermata 2, volume 3, Crinoidea Articulata. Lawrence, Kansas: KU Paleontological Institute, University of Kansas.Google Scholar
  42. Hess, H., Ausich, W., Brett, C. E., & Simms, M. J. (Eds.). (1999). Fossil Crinoids. New York: Cambridge University Press.Google Scholar
  43. Hess, H., & Holenweg, H. (1985). Die Begleitfauna auf den Seelilienbänken im mittleren Dogger des Schweizer Juras. Tätigkeitsberichte der Naturforschenden Gesellschaft Baselland, 33, 141–177.Google Scholar
  44. Hess, H., & Meyer, C. A. (2008). A new ophiuroid (Geocoma schoentalensis sp. nov.) from the Middle Jurassic of northwestern Switzerland and remarks on the family Aplocomidae Hess 1965. Swiss Journal of Geosciences, 101, 29–40.CrossRefGoogle Scholar
  45. Hofmann, K. (1996). Die mikro-endolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas. Geologisches Jahrbuch, A136, 1–153.Google Scholar
  46. Insalaco, E. (1996). Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 169–194.CrossRefGoogle Scholar
  47. Irimura, S. (1982). The brittle-stars of Sagami Bay. Japan: Biological Laboratory Imperial Household.Google Scholar
  48. Koehler, R. (1904). Ophiures des mers profondes. Siboga-Expeditie, 45, 1–176.Google Scholar
  49. Koehler, R. (1922). Ophiurans of the Philippine Seas and adjacent waters. Smithsonian Institution, United States National Museum, 100, 1–486.Google Scholar
  50. Kutscher, M. & Jagt, J.W.M. (2000). Early Maastrichtian ophiuroids from Rügen (northeast Germany) and Møn (Denmark). In J.W.M. Jagt, Late Cretaceous-Early Palaeocene echinoderms and the K/T boundary in the southeast Netherlands and the northeast Belgiumpart 3: Ophiuroids (pp. 45–107).Google Scholar
  51. Littler, M. M., Littler, D. S., Blair, S. M., & Norris, J. N. (1985). Deepest known plant life is discovered on an uncharted seamount. Science, 227, 57–59.CrossRefGoogle Scholar
  52. Litvinova, N. M. (1992). Revision of the genus Ophiotholia (Echinodermata, Ophiuroidea). Zoologichesky Zhurnal, 71, 47–57. (In Russian).Google Scholar
  53. Ljungman, A. V. (1867). Ophiuroidea viventia huc usque cognita enumerat. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 23, 303–336.Google Scholar
  54. Lyman, T. (1869). Preliminary report on the Ophiuridea and Astrophytidae dredged in deep water between Cuba and the Florida Reef, by L.F. de Pourtalès, Assist. U.S. Coast Survey. Bulletin of the Museum of Comparative Zoology, Harvard University, 1, 309–354.Google Scholar
  55. Lyman, T. (1879). Ophiuridae and Astrophytidae of the “Challenger” expedition. Part II. Bulletin of the Museum of Comparative Zoology at Harvard College, 6, 17–83, pls. 1–10.Google Scholar
  56. Lyman, T. (1880). A structural feature hitherto unknown among Echinodermata found in deep-sea ophiurans. Anniversary Memoirs of the Boston Society of Natural History, 1880, 1–12, pls 1–2.Google Scholar
  57. Lyman, T. (1882). Ophiuroidea. Report on the Scientific Results of the Voyage of the Challenger, Zoology, 5, 1–385.Google Scholar
  58. Lyman, T. (1883). Reports on the results of dredging, under the supervision of Alexander Agassiz, in the Caribbean Sea (1878–79), and on the east coast of the United States, during the summer of 1880, by the U.S. coast survey steamer “Blake”, commander J.R. Bartlett, U.S.N., commanding. XX. Report on the Ophiuroidea. Bulletin of the Museum of Comparative Zoology at Harvard College, 10, 227–287.Google Scholar
  59. Martynov, A. (2010). Reassessment of the classification of the Ophiuroidea (Echinodermata), based on morphological characters. I. General character evaluation and delineation of the families Ophiomyxidae and Ophiacanthidae. Zootaxa, 2697, 1–154.Google Scholar
  60. Mégnien, C. (Ed.) (1980). Synthèse géologique du Bassin de Paris, Atlas. Mémoires du Bureau de Recherches géologiques et minières, vol. 2, p. 102.Google Scholar
  61. Menzies, R. J., George, R. Y., & Rowe, G. T. (1973). Abyssal environment and ecology of the world oceans. New York: Wiley.Google Scholar
  62. Meyer, C.A. (1987). Palökologie, Biofazies und Sedimentologie von Seeliliengemeinschaften aus dem unteren Hauptrogenstein des Nordwestschweizer Jura. Unpublished PhD Thesis, University of Bern, 83 pp.Google Scholar
  63. Meyer, C. A. (1988). Paläoökologie, Biofazies und Sedimentologie von Seelilien-Gemeinschaften aus dem Unteren Hauptrogenstein des Nordwestschweizer Jura. Revue de Paléobiologie, 7(2), 359–433.Google Scholar
  64. Meyer, C. A. (1990). Depositional environment and palaeoecology of crinoid-communities from the Middle Jurassic Burgundy-Platform of Western Europe. In C. De Ridder, P. Dubois, M.-C. Lahaye, & M. Jangoux (Eds.), Echinoderm Research (pp. 25–31). Rotterdam: Balkema.Google Scholar
  65. Müller, J., & Troschel, F. H. (1840). Über die Gattungen der Ophiuren. Archiv für Naturgeschichte, Berlin, 6, 327–330.Google Scholar
  66. Oberhänsli, H. (1984). Stabile Isotopen: Hilfsmittel für die Paläobathymetrie. Paläontologische Kursbücher, 2, 96–103.Google Scholar
  67. Orbigny, A. d‘(1850). Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphique, 2, 1–428. Paris: Masson.Google Scholar
  68. Paterson, G. L. J. (1985). The deep-sea Ophiuroidea of the North Atlantic Ocean. Bulletin of the British Museum (Natural History). Zoology Series, 49, 1–162.Google Scholar
  69. Phleger, F. B. (1960). Ecology and distribution of recent foraminifera. Baltimore, Maryland: Johns Hopkins University.Google Scholar
  70. Phleger, F. B. (1964). Foraminiferal ecology and marine geology. Marine Geology, 1, 16–43.CrossRefGoogle Scholar
  71. Porrenga, D. H. (1967). Glauconite and chamosite as depth indicators in the marine environment. Marine Geology, 5, 495–501.CrossRefGoogle Scholar
  72. Radtke, G., Hofmann, K., & Golubic, S. (1997). A bibliographic overview of micro- and macroscopic bioerosion. Courier Forschungsinstitut Senckenberg, 201, 307–340.Google Scholar
  73. Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–428.CrossRefGoogle Scholar
  74. Smith, A. B., Paterson, G. L. J., & Lafay, B. (1995). Ophiuroid phylogeny and higher taxonomy: morphological, molecular and palaeontological perspectives. Zoological Journal of the Linnean Society, 114, 213–243.Google Scholar
  75. Stöhr, S. (2011). New records and new species of Ophiuroidea (Echinodermata) from Lifou, Loyalty Islands, New Caledonia. Zootaxa, 3089, 1–50.Google Scholar
  76. Stöhr, S., O’Hara, T.D. & Thuy, B. (2012). Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One, 7(3), 1–14, e31940.Google Scholar
  77. Stöhr, S. & O’Hara, T.D. (2007). World Ophiuroidea database. Consulted 01 Feb 2012.
  78. Thuy, B., Ishida, Y., Doi, E. & Kroh, A. (2012). New ophiacanthid brittle stars (Echinodermata: Ophiuroidea) from the Upper Triassic of Japan: first insights into the origin and evolution of an extant deep-sea group. Journal of Systematic Palaeontology (in press).Google Scholar
  79. Thuy, B., Gale, A. S., & Reich, M. (2011). A new echinoderm Lagerstätte from the Pliensbachian (Early Jurassic) of the French Ardennes. Swiss Journal of Palaeontology, 130, 173–185.CrossRefGoogle Scholar
  80. Thuy, B., & Stöhr, S. (2011). Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): new perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013, 1–47.Google Scholar
  81. Tyler, P. A. (1980). Deep-sea ophiuroids. Oceanography and Marine Biology Annual Review, 18, 125–153.Google Scholar
  82. Verrill, A. E. (1899). Report on the Ophiuroidea collected by the Bahama expedition in 1893. Bulletin from the Laboratories of Natural History of the State University of Iowa, 5, 1–86.Google Scholar
  83. Villier, L., Charbonnier, S., & Riou, B. (2009). Sea stars from Middle Jurassic Lagerstätte of La Voulte-sur-Rhône (Ardèche, France). Journal of Paleontology, 83, 389–398.CrossRefGoogle Scholar
  84. Wetzel, A., Weissert, H. Schaub, M., and Voegelin, A.R. (2013). Seawater circulation on an oolite-dominated carbonate system in an epeiric sea (Middle Jurassic, Switzerland). Sedimentology, 60 (special issue) (in press).Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2012

Authors and Affiliations

  1. 1.Department of Geobiology, Geoscience CentreUniversity of GöttingenGöttingenGermany
  2. 2.Naturhistorisches Museum BaselBaselSwitzerland

Personalised recommendations