Swiss Journal of Palaeontology

, Volume 131, Issue 2, pp 303–315 | Cite as

On some anthracotheriid (Artiodactyla, Mammalia) remains from northern Greece: comments on the palaeozoogeography and phylogeny of Elomeryx

  • Dimitris S. KostopoulosEmail author
  • George D. Koufos
  • Kimon Christanis


A few isolated mammal teeth from some Greek coal samples of unknown origin represent a small bothriodontine anthracotheriid, ascribed to Elomeryx. Analysis of the coalification stage of the fossil-bearing coal samples indicates the Lower Miocene Moschopotamos coal pits (Katerini Basin) as the most probable site of origin. The studied teeth are metrically close to E. crispus from Western Europe but share dental apomorphies with E. borbonicus, and E. japonicus and along with Elomeryx material from some Greek and Turkish sites pose a number of systematic, biochronologic, zoogeographic and phylogenetic questions. In the light of new evidence it seems that a small but advanced Elomeryx spanned the Oligo-Miocene boundary of S. Balkans. Furthermore, a revision of the old southern Balkan record together with a parsimony analysis suggest that Bakalovia is a first stage within the evolutionary history of Elomeryx, which complicated phylogeography is further discussed.


Bothriodontinae Elomeryx Greece Oligo-Miocene Phylogeny Palaeogeography 



Thanks are due to E. Albayrak, L. Costeur, B. Didier, S. Ducrocq, Y. Islamoğlu, F. Lihoreau, G. Merceron, D. Nagel, A. Prieur, G. Rössner, and T. Tsubamoto for providing casts, photos, bibliography, access to collections, as well as for useful comments and suggestions. Coal samples from Avantas, Thrace, were kindly provided by G. Syrides. K.C. also thanks Riza Görkem Oskay, postgraduate student at the Department of Geology, University of Patras, for assisting in the reflectance measurements. G.D.K. thanks G. Rössner for giving him access to the collections at her disposal, as well as for help and hospitality. CNRS PICS 5185 financially supported D.S.K. during his visit to Lyon. We also thank the Executive Board of the European Association of Vertebrate Palaeontology (EAVP) and the Organizing Committee of the 9th EAVP meeting in Creta, Greece, where a preliminary version of this work was presented. M. Pickford and an anonymous referee are deeply thanked for their critical remarks and improving the English.

Supplementary material

13358_2012_41_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)
13358_2012_41_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 kb)


  1. Belkin, H. E., Tewalt, S. J., Hower, J. C., Stucker, J. D., O’Keefe, J. M. K., Tatu, C. A., et al. (2010). Petrography and geochemistry of Oligocene bituminous coal from Jiu Valley, Petroşani basin (southern Carpathian Mountains), Romania. International Journal of Coal Geology, 82, 68–80.CrossRefGoogle Scholar
  2. Benda, L., Meulenkamp, J. E. (1979). Biostratigraphic correlations in the Eastern Mediterranean Neogene. 5. Calibration of sporomorph associations, marine microfossil and mammal zones, marine and continental stages and the radiometric scale. Annales Géologiques des Pays Helleniques h. S. 1, 61–70.Google Scholar
  3. Boisserie, J.-R., Lihoreau, F., & Brunet, M. (2005). Origins of Hippopotamidae (Mammalia, Cetartiodactyla) towards resolution. Zoologica Scripta, 34, 119–143.CrossRefGoogle Scholar
  4. Christanis, K. (2004). Coal facies studies in Greece. In: M. Hámor-Vidó (Ed.), Reconstruction of Peat-Forming Environments: A Global Historical Review. International Journal of Coal Geology, 58, 99–106.Google Scholar
  5. Coombs, W. P., & Coombs, M. C. (1977). The origin of anthracotheres. Neues Jahrbuch für Geologie und Paläontologie Mh, 10, 584–599.Google Scholar
  6. de Bonis, L. (1964). Étude de quelques mammifères du Ludien de la Débruge (Vaucluse). Annales de Paléontologie, 50, 119–154.Google Scholar
  7. Demirel, I. H., & Karayigit, A. I. (1999). Quality and petrographic characteristics of the lacustrine Ermenek coal (early Miocene), Turkey. Energy Sources, 21, 329–338.CrossRefGoogle Scholar
  8. Ducrocq, S. (1999). The late Eocene Anthracotheriidae (Mammalia, Artiodactyla) from Thailand. Palaeontographica Abteilung A, 252, 93–140.Google Scholar
  9. Ducrocq, S., & Lihoreau, F. (2006). The occurrence of bothriodontines (Artiodactyla, Mammalia) in the Palaeogene of Asia with special reference to Elomeryx: palaeobiogeographical implications. Journal of Asian Earth Sciences, 27, 885–891.CrossRefGoogle Scholar
  10. Fejfar, O., Kaiser, M. Th. (2005). Insect bone modification and paleoecology of Oligocene mammal-bearing sites in the Doupov Mountains, NW Bohemia. Palaeontologia Electronica 8 (1) 8A.Google Scholar
  11. Geais, G. (1934). Le Brachyodus borbonicus des argiles de St. Henri (près Marseille). Travaux du Laboratoire de Géologie de la Faculté des Sciences de Lyon, 25, 1–54.Google Scholar
  12. Gürdal, G., & Bozcu, M. (2011). Petrographic characteristics and depositional environment of Miocene Çan coals, Çanakkale-Turkey. International Journal of Coal Geology, 85, 143–160.CrossRefGoogle Scholar
  13. Hammer, O., Harper, D.A.T., Ryan, P.D. (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4(1), 9.Google Scholar
  14. Hellmund, M. (1991). Revision der europäischen Species der Gattung Elomeryx Marsh 1894 (Anthracotheriidae, Artiodactyla, Mammalia) -odontologische Untersuchungen. Palaeontographica Abteilung A, 220, 1–101.Google Scholar
  15. Ioakim, Ch. (1986). Palynological-stratigraphical study of the bore-hole M4a, Katerini Basin. Reports of the Greek Institute of Geology and Mineral Exploration (in Greek).Google Scholar
  16. Islamoğlu, Y., Harzhauser, M., Gross, M., Jiménez-Morreno, G., Coric, S., Kroh, A., Rögl, F., Made, van der J. (2010). From Tethys to eastern Paratethys: Oligocene depositional environments, paleoecology and paleobiogeography of the Thrace Basin (NW Turkey). International Journal of Earth Sciences 99, 183–200.Google Scholar
  17. ISO 7404-2 (2004a). Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 2: Method for Preparing Coal Samples. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  18. ISO 7404-5 (2004b). Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  19. Juranov, S. (1992). Stratigraphy of Eocene series in the Bourgas District. Review of the Bulgarian Geological Society, 53, 47–59. (in Bulgarian with English abstract).Google Scholar
  20. Kalkreuth, W., Kotis, T., Papanicolaou, C., & Kokkinakis, P. (1991). The geology and coal petrology of a Miocene lignite profile at Meliadi Mine, Katerini, Greece. International Journal of Coal Geology, 17, 51–67.CrossRefGoogle Scholar
  21. Karayigit, A. I. (2005). Petrography and facies analysis of the Miocene Soma coals, Manisa, Turkey. 57th Annual Meeting of the International Committee for Coal and Organic Petrology-ICCP. Abstract volume (p. 12), Patras, Greece.Google Scholar
  22. Karayigit, A. I., Kerey, I. E., & Bozkus, C. (2002). Depositional environments of Oligo/Miocene coal bearing strata and coal quality from the Oltu-Balkaya Basin, NE Turkey. Energy Sources, 24, 653–665.CrossRefGoogle Scholar
  23. Kopp, K. O. (1965). Geologie Thrakiens III: das Tertiaer zwischen Rhodope und Evros. Annales Géologiques des Pays Helleniques, 16, 315–362.Google Scholar
  24. Kostova, I., Markova, K. (2005). Organic petrology, mineralogy and depositional environment of the high sulphur Eocene Bourgas coal, Bulgaria. Sofia: Proceedings of the Jubilee International Congerence “80 years Bulgarian Geological Society” (pp. 164–167). Sofia.Google Scholar
  25. Kotis, T. (1997). The lignite formations of the Neogene basin of Moschopotamos/Katerini in relation to the Pieria geotectonic unit (PhD Thesis, University of Patras). (in Greek).Google Scholar
  26. Lebküchner, R. F. (1974). Beitrag zur Kenntnis der Geologie des Oligozäns von Mittelthrakien (Turkei). Bulletin of the Mineral Research and Exploration Institute of Turkey, 83, 1–30.Google Scholar
  27. Lihoreau, F. (2003). Systématique et paléoécologie des anthracotheriidae (Artiodactyla; Suiformes) du Mio-Pliocène de l’Ancien Monde: implications paléobiogéographiques (PhD Thesis, Universite de Poitiers).Google Scholar
  28. Lihoreau, F., & Ducrocq, S. (2007). Family Anthracotheriidae. In D. R. Prothero & S. E. Foss (Eds.), The evolution of Artiodactyls (pp. 89–105). Baltimore: John Hopkins University Press.Google Scholar
  29. Lihoreau, F., Ducrocq, S., Antoine, P.-O., Viney-Liaud, M., Rafaÿ, S., Garcia, G., et al. (2009). First complete skulls of Elomeryx crispus (Gervais, 1849) and of Protaceratherium albigense (Roman, 1912) from a new Oligocene locality near Moissac (SW France). Journal of Vertebrate Paleontology, 29, 242–253.CrossRefGoogle Scholar
  30. Lüttig, G., & Thenius, E. (1961). Über einen Anthracotheriiden aus dem Alttertiär von Thrazien (Griechenland). Palaeontologische Zeitschrift, 35, 179–186.Google Scholar
  31. Macdonald, J. R. (1956). The North American anthracotheres. Journal of Paleontology, 30, 615–645.Google Scholar
  32. Melentis, J. (1965). Der erste Nachweis von Brachyodus onoideus (Mammalia, Anthracotheriidae) aus Griechenland und die Datierung der Fundschichten. Annals of the Academy of Athens, 40, 406–423.Google Scholar
  33. Nikolov, J. (1967). Neue obereozäne Arten der Gattung Elomeryx. Neues Jahrbuch für Geologie und Paläontologie Abhanlungen, 128, 205–214.Google Scholar
  34. Nikolov, J., & Heissig, K. (1985). Fossile Säugertiere aus dem Obereozän und Unteroligozän Bulgariens und ihre Bedeutung für die Paläogeographie. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 25, 61–79.Google Scholar
  35. Ozansoy, F. (1962). Les anthracothéres de l’Oligocène inférieur de la Thrace orientale (Turquie). Bulletin of the Mineral Research and Exploration Institute of Turkey, 58, 85–96.Google Scholar
  36. Papanicolaou, C. (1994). Quality of Greek lignites based upon methods of organic petrology and geochemistry (PhD Thesis, Technical University Chania, Crete). (in Greek).Google Scholar
  37. Papanicolaou, C., Dehmer, J., & Fowler, M. (2000). Petrological and organic geochemical characteristics of coal samples from Florina, Lava, Moschopotamos and Kalavryta coal fields, Greece. International Journal of Coal Geology, 44, 267–292.CrossRefGoogle Scholar
  38. Papanicolaou, C., Kotis, T., Foscolos, A., & Goodarzi, F. (2004). Coals of Greece: a review of properties, uses and future perspectives. International Journal of Coal Geology, 58, 147–169.CrossRefGoogle Scholar
  39. Pickford, M. (2008). The myth of the hippo-like anthracothere: the eternal problems of homology and convergence. Revista Española de Paleontología, 23, 31–90.Google Scholar
  40. Ruckert-Ulkumen, N. (1992). Stratigraphy, paleoecology and otolith fauna of the lignite deposits (Oligo-Miocene) of Kucuk Doganca Koyu near Kesan, Thracia, Turkey. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 32, 93–114.Google Scholar
  41. Sach, V. J., & Heizmann, E. P. J. (2001). Stratigraphie und Säugetierfaunen der Brackwassermolasse in der Umgebung von Ulm (Südwestdeutschland). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 310, 1–95.Google Scholar
  42. Schaub, S. (1948). Elomeryx minor (Deperet), ein Bothriodontine aus dem schweizerrischen Aquitanien. Eclogae Geologicae Helvetiae, 41, 340–347.Google Scholar
  43. Scherler, L., Becker, D., & Berger, J.-P. (2011). Tapiridae (Perissodactyla, Mammalia) of the Swiss Molasse Basin during the Oligocene–Miocene transition. Journal of Vertebrate Paleontology, 31, 479–496.CrossRefGoogle Scholar
  44. Siyako, M., & Huvaz, O. (2007). Eocene stratigraphic evolution of the Thrace Basin, Turkey. Sedimentary Geology, 198, 75–91.CrossRefGoogle Scholar
  45. Sylvestrou, J. (2002). Stratigraphic, paleontological and palaeogeographic study of the Neogene-Quaternary deposits of Katerini Basin, Northern Greece (PhD Thesis School of Geology Aristotle University of Thessalonini). Scientific Annals (suppl.) volume 67 (in Greek).Google Scholar
  46. Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Little, R., & Robert, P. (1998). Organic Petrology. Berlin: Gebrüder Borntraeger.Google Scholar
  47. Tsubamoto, T., & Kohno, N. (2011). Reappraisal of “Brachyodus” japonicus, an Oligocene anthracotheriid cetartiodactyl from Japan. Palaeontological Research, 15, 115–124.CrossRefGoogle Scholar
  48. Ünay-Bayraktar, E. (1989). Rodents from the middle Oligocene of Turkish Thrace. Utrecht Micropaleontological Bulletins special publication 5.Google Scholar
  49. van der Made, J. (1996). Superfamily Hippopotamoidea. In G. Rössner and K. Heissig (Eds.), The Miocene Land Mammals of Europe (pp. 203–208). Munich: Dr. Friedrich Pfeil.Google Scholar
  50. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle Scholar
  51. Žitović, D., Jovančićević, B., Schwarzbauer, J., Cvetković, O., Gržetić, I., Ercegorac, M., et al. (2010). The petrographical and organic geochemical composition of coal from the East Field, Bogovina Basin (Serbia). International Journal of Coal Geology, 81, 227–241.CrossRefGoogle Scholar
  52. Žitović, D., Lorenz, H., Gržetić, I., Ercegorac, M., Simić, V. (2005). Some geochemical characteristics of Soko Banje low rank coal, eastern Serbia: 57th Annual Meeting of the International Committee for Coal and Organic Petrology-ICCP, Abstract volume (p. 21), Patras, Greece.Google Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2012

Authors and Affiliations

  • Dimitris S. Kostopoulos
    • 1
    Email author
  • George D. Koufos
    • 1
  • Kimon Christanis
    • 2
  1. 1.Department of GeologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of GeologyUniversity of PatrasRio PatrasGreece

Personalised recommendations