Photoperiodic induction of reproductive diapause and life-history traits of a tortoise beetle, Laccoptera nepalensis (Coleoptera: Chrysomelidae), a range-expanding pest of southern origin

Abstract

The tortoise beetle, Laccoptera nepalensis Boheman (Coleoptera: Chrysomelidae), is an important insect pest of the sweet potato, and is naturally distributed in southern to eastern Asia. The species has recently been expanding its range to the main islands of Japan, where it had previously not been distributed. In this study, the life-history traits of a local population in southern Kyushu, Japan were examined. The adults showed a long-day photoperiodic response at 20 and 25 °C with critical photophases of 13.97 and 12.52 h/day, respectively: female adults reared under long-day conditions laid eggs, whereas those reared under short-day conditions did not and entered diapause. When adults that had been reared under 16L–8D at 20 °C were transferred to 12L–12D at 20 °C, they ceased laying eggs. These results, together with the developmental threshold temperature and thermal constant obtained for each stage, suggest that the beetle overwinters in the adult stage in a state of diapause and produces a maximum of three generations per year in southern Kyushu.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bean DW, Dalin P, Dudley TL (2012) Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl 5:511–523

    Article  Google Scholar 

  2. Bean DW, Wang T, Bartelt RJ, Zilkowski BW (2014) Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.). Environ Entomol 36:531–540

    Article  Google Scholar 

  3. Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada (terrestrial arthropods), Ottawa

    Google Scholar 

  4. Doležal P, Habuštová O, Sehnal F (2007) Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata. J Insect Physiol 53:849–857

    Article  Google Scholar 

  5. Gomi T (1997) Geographic variation in critical photoperiod for diapause induction and its temperature dependence in Hyphantria cunea Drury (Lepidoptera: Arctiidae). Oecologia 111:160–165

    Article  Google Scholar 

  6. Gomi T, Takeda M (1996) Changes in life-history traits in the fall webworm within half a century of introduction to Japan. Funct Ecol 10:384–389

    Article  Google Scholar 

  7. Gotthard K (1998) Life history plasticity in the satyrine butterfly Lasiommata petropolitana: investigating an adaptive reaction norm. J Evol Biol 11:21–39

    Article  Google Scholar 

  8. Hodek I (1979) Intermittent character of adult diapause in Aelia acuminata (Heteroptera). J Insect Physiol 25:867–871

    Article  Google Scholar 

  9. Ishihara M, Hayashi T (2000) Photoperiodic induction and termination of adult diapause in the willow leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae). Entomol Sci 3:439–441

    Google Scholar 

  10. Japan Meteorological Agency (2020) Meteorological data. http://www.data.jma.go.jp/obd/stats/etrn/index.php. Accessed 19 Apr 2020 (in Japanese)

  11. Kimoto S, Takizawa H (1994) Leaf beetles (Chrysomelidae) of Japan. Tokai University Press, Hadano (in Japanese)

    Google Scholar 

  12. Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127

    Article  Google Scholar 

  13. Kurota H, Shimada M (2001) Photoperiod- and temperature-dependent induction of larval diapause in a multivoltine bruchid, Bruchidius dorsalis. Entomol Exp Appl 99:361–369

    Article  Google Scholar 

  14. Lefevere KS, De Wilde J (1984) Effect of photoperiod and allatectomy on reproduction and (second) diapause induction in post-diapause adult females of the Colorado potato beetle, Leptinotarsa decemlineata Say. Int J Invertebr Reprod Dev 7:69–72

    Article  Google Scholar 

  15. Lounibos LP, Escher RL, Lourenço-de-Oliveira R (2003) Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Ann Entomol Soc Am 96:512–518

    Article  Google Scholar 

  16. Morrison CR, Windsor DM (2017) The life history of Chelymorpha alternans (Coleoptera: Chrysomelidae: Cassidinae) in Panamá. Ann Entomol Soc Am 111:31–41

    Article  Google Scholar 

  17. Musolin DL, Dolgovskaya MY, Protsenko VY, Karpun NN, Reznik SY, Saulich AK (2019) Photoperiodic and temperature control of nymphal growth and adult diapause induction in the invasive Caucasian population of the brown marmorated stink bug, Halyomorpha halys. J Pest Sci 92:621–631

    Article  Google Scholar 

  18. Musolin DL, Numata H (2003a) Photoperiodic and temperature control of diapause induction and colour change in the southern green stink bug Nezara viridula. Physiol Entomol 28:65–74

    Article  Google Scholar 

  19. Musolin DL, Numata H (2003b) Timing of diapause induction and its life-history consequences in Nezara viridula: is it costly to expand the distribution range? Ecol Entomol 28:694–703

    Article  Google Scholar 

  20. Nakamura K, Numata H (2006) Effects of photoperiod and temperature on the induction of adult diapause in Dolycoris baccarum (L.) (Heteroptera: Pentatomidae) from Osaka and Hokkaido. Japan Appl Entomol Zool 41:105–109

    Article  Google Scholar 

  21. Nakamura K, Hodek I, Hodková M (1996) Recurrent photoperiodic response in Graphosoma lineatum (Heteroptera: Pentatomidae). Eur J Entomol 93:19–523

    Google Scholar 

  22. Numata H, Hidaka T (1982) Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae). I. Reversible induction and termination of diapause. Appl Entomol Zool 17:530–538

    Article  Google Scholar 

  23. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  24. Ruberson JR, Shen YJ, Kring TJ (2000) Photoperiodic sensitivity and diapause in the predator Orius insidiosus (Heteroptera: Anthocoridae). Ann Entomol Soc Am 93:1123–1130

    Article  Google Scholar 

  25. Sadakiyo S, Ishihara M (2011) Rapid seasonal adaptation of an alien bruchid after introduction: geographic variation in life cycle synchronization and critical photoperiod for diapause induction. Entomol Exp Appl 140:69–76

    Article  Google Scholar 

  26. Shigetoh H, Suenaga H, Minami M, Watanabe K (2020) Records and current state of distribution of Laccoptera nepalensis Boheman, 1855 (Coleoptera, Chrysomelidae, Cassidinae) in Japan. Bull Hoshizaki Green Found 23:227–243 (in Japanese with English summary)

    Google Scholar 

  27. Shintani Y, Numata H (2010) Adaptive significance of the recurrent photoperiodic response in a spring-breeding carabid beetle, Carabus yaconinus. Entomol Sci 13:367–374

    Article  Google Scholar 

  28. Shintani Y, Tatsuki S, Ishikawa Y (1996) Geographic variation of photoperiodic response in larval development of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). Appl Entomol Zool 31:495–504

    Article  Google Scholar 

  29. Shintani Y, Hirose Y, Terao M (2011) Effects of temperature, photoperiod and soil humidity on induction of pseudopupal diapause in the bean blister beetle Epicauta gorhami. Physiol Entomol 36:14–20

    Article  Google Scholar 

  30. Shintani Y, Kawazu K, Hirose Y (2015) Photoperiodic induction of prepupal diapause and its role in synchronization with host phenology in the hibiscus caterpillar, Xanthodes transversa. Entomol Sci 18:360–367

    Article  Google Scholar 

  31. Shintani Y, Kato Y, Saito T, Oda Y, Terao M, Nagamine K (2018) Maladaptive photoperiodic response in an invasive alien insect, Milionia basalis pryeri (Lepidoptera: Geometridae), in southern Kyushu, Japan. Appl Entomol Zool 53:343–351

    CAS  Article  Google Scholar 

  32. Tajima J, Miyahara R, Terao M, Shintani Y (2018) Environmental control of the seasonal life cycle of a zoophytophagous mirid, Adelphocoris triannulatus (Hemiptera: Miridae). Appl Entomol Zool 53:333–341

    Article  Google Scholar 

  33. Tanaka K, Murata K, Matsuura A (2015) Rapid evolution of an introduced insect Ophraella communa LeSage in new environments: temporal changes and geographical differences in photoperiodic response. Entomol Sci 18:104–112

    Article  Google Scholar 

  34. Tauber MJ, Tauber CA (1969) Diapause in Chrysopa carnea (Neuroptera: Chrysopidae): I. Effect of photoperiod on reproductively active adults. Can Entomol 101:364–370

    Article  Google Scholar 

  35. Tauber MJ, Tauber CA (1972) Geographic variation in critical photoperiod and in diapause intensity of Chrysopa carnea (Neuroptera). J Insect Physiol 18:25–29

    Article  Google Scholar 

  36. Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York

    Google Scholar 

  37. Time and Date AS (2019) Sunrise and sunset calculator—city lookup. https://www.timeanddate.com/sun/. Accessed 22 Feb 2019

  38. Vaz Nunes M, Koveos DS, Veerman A (1990) Geographical variation in photoperiodic induction of diapause in the spider mite (Tetranychus urticae): A causal relation between critical nightlength and circadian period? J Biol Rhythms 5:47–57

    CAS  Article  Google Scholar 

  39. Wang X, Xue F, Tan Y, Lei C (2007) The role of temperature and photoperiod in diapause induction in the brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). Eur J Entomol 104:693–697

    Article  Google Scholar 

  40. Xue F, Spieth HR, Aiqing L, Ai H (2002) The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). J Insect Physiol 48:279–286

    CAS  Article  Google Scholar 

  41. Yoshio M, Ishii M (1998) Geographical variation of pupal diapause in the great mormon butterfly, Papilio memnon L. (Lepidoptera: Papilionidae), in western Japan. Appl Entomol Zool 33:281–288

    Article  Google Scholar 

  42. Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Shintani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shintani, Y., Takahashi, Y., Nakagawa, K. et al. Photoperiodic induction of reproductive diapause and life-history traits of a tortoise beetle, Laccoptera nepalensis (Coleoptera: Chrysomelidae), a range-expanding pest of southern origin. Appl Entomol Zool 56, 99–106 (2021). https://doi.org/10.1007/s13355-020-00716-4

Download citation

Keywords

  • Laccoptera nepalensis
  • Photoperiodism
  • Reproductive diapause
  • Seasonal adaptation
  • Voltinism
  • Range-expanding insect