Skip to main content
Log in

Seasonal differences in the abundance of an ant-adapted parasitoid, Lysiphlebus japonicus (Hymenoptera: Aphidiidae), in ant-attended colonies of the spirea aphid Aphis spiraecola (Hemiptera: Aphididae) on citrus: comparison for two ant species, Lasius japonicus and Pristomyrmex punctatus (Hymenoptera: Formicidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

The parasitoid Lysiphlebus japonicus Ashmead is able to exploit aphids attended by ants and is therefore a candidate for a biological control agent of ant-attended aphids, but there is little information on the factors that influence changes in the population of this parasitoid. The species of aphid-attending ants may be a factor in seasonal fluctuations in its occurrence. This study experimentally examined how each of the two ant species Lasius japonicus Santschi and Pristomyrmex punctatus Smith influences the seasonal change in the abundance of this ant-adapted parasitoid in the colonies of the spirea aphid Aphis spiraecola Patch, which the ant species attends, on citrus in Japan. The numbers of aphid mummies formed by the parasitoid and ovipositing parasitoid females in the ant-attended aphid colonies in late spring (mid- to late May) were compared with the numbers in mid-summer (late July to mid-August) for each ant species. Significantly more mummies were found in the aphid colonies attended by P. punctatus than in the colonies attended by Lasius japonicus in both seasons. The number of mummies in P. punctatus-attended aphid colonies did not differ significantly between the two seasons. In the Lasius japonicus-attended colonies, however, the mummy numbers were significantly reduced in mid-summer compared with late spring. The seasonal distribution of mummy numbers was significantly dependent on the aphid-attending ant species. The number of parasitoid females that deposited eggs in the ant-attended aphid colonies varied in a similar manner to the number of mummies. Thus, the species of aphid-attending ant determines the seasonal difference in the abundance of the ant-adapted parasitoid in ant-attended aphid colonies. Possible underlying mechanisms for this result and its implications for the biological control of ant-attended aphids on citrus are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–b
Fig. 2a–b

Similar content being viewed by others

References

  • Addicott JF (1979) A multispecies aphid–ant association: density dependence and species-specific effects. Can J Zool 57:558–569

  • Andersen AN (1986) Diversity, seasonality and community organization of ants at adjacent heath and woodland sites in southeastern Australia. Aust J Zool 34:53–64

    Article  Google Scholar 

  • Banks CJ (1962) Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae Scop. on bean plants. Ann Appl Biol 50:669–679

    Article  Google Scholar 

  • Bartlett BR (1961) The influence of ants upon parasites, predators, and scale insects. Ann Entomol Soc Am 54:543–551

    Article  Google Scholar 

  • Barzman MS, Daane KM (2001) Host-handling behaviours in parasitoids of the black scale: a case for ant-mediated evolution. J Anim Ecol 70:237–247

    Article  Google Scholar 

  • Basu P (1997) Seasonal and spatial patterns in ground foraging ants in a rain forest in the Western Ghats India. Biotropica 29:489–500

    Article  Google Scholar 

  • Bristow CM (1984) Differential benefits from ant attendance to two species of Homoptera on New York ironweed. J Anim Ecol 53:715–726

    Article  Google Scholar 

  • Buckley RC (1987) Interactions involving plants, Homoptera, and ants. Annu Rev Ecol Syst 18:111–135

    Article  Google Scholar 

  • Buckley RC, Gullan P (1991) More aggressive ant species (Hymenoptera: Formicidae) provide better protection for soft scales and mealybugs (Homoptera: Coccidae, Pseudococcidae). Biotropica 23:282–286

    Article  Google Scholar 

  • Calabuig A, Tena A, Wäckers FL, Fernández-Arrojo L, Plou FJ, Garcia-Marí F, Pekas A (2015) Ants impact the energy reserves of natural enemies through the shared honeydew exploitation. Ecol Entomol 40:687–695

    Article  Google Scholar 

  • Cudjoe AR, Neuenschwander P, Copland MJW (1993) Interference by ants in biological control of the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae) in Ghana. Bull Entomol Res 83:15–22

    Article  Google Scholar 

  • Cushman JH, Whitham TG (1989) Conditional mutualism in a membracid–ant association: temporal, age-specific, and density-dependent effects. Ecology 70:1040–1047

  • Del-Claro K, Oliveira PS (2000) Conditional outcomes in a neotropical treehopper–ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124:156–165

  • Dempster JP, McLean IFG (1998) Insect populations in theory and in practice. Kluwer, Dordrecht

  • Eisner T, Hicks K, Eisner M, Robson DS (1978) “Wolf-in-sheep’s-clothing” strategy of a predaceous insect larva. Science 199:790–794

    Article  PubMed  CAS  Google Scholar 

  • El Keroumi A, Naamani K, Soummane H, Dahbi A (2012) Seasonal dynamics of ant community structure in the Moroccan Argan Forest. J Insect Sci 12:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazer BD, van den Bosch R (1973) Biological control of the walnut aphid in California: the inter-relationship of the aphid and its parasite. Environ Entomol 2:561–568

    Article  Google Scholar 

  • Haines IH, Haines JB (1978) Colony structure, seasonality and food requirements of the crazy ant, Anoplolepis longipes (Jerd.), in the Seychelles. Ecol Entomol 3:109–118

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Itioka T, Inoue T (1996) The consequences of ant-attendance to the biological control of the red wax scale insect Ceroplastes rubens by Anicetus beneficus. J Appl Ecol 33:609–618

    Article  Google Scholar 

  • Itioka T, Inoue T (1999) The alternation of mutualistic ant species affects the population growth of their trophobiont mealybug. Ecography 22:169–177

    Article  Google Scholar 

  • Kaneko S (2002) Aphid-attending ants increase the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids by repelling intraguild predators. Entomol Sci 5:131–146

    Google Scholar 

  • Kaneko S (2003a) Different impacts of two species of aphid-attending ants with different aggressiveness on the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids. Ecol Res 18:199–212

    Article  Google Scholar 

  • Kaneko S (2003b) Impacts of two ants, Lasius niger and Pristomyrmex pungens (Hymenoptera: Formicidae), attending the brown citrus aphid, Toxoptera citricidus (Homoptera: Aphididae), on the parasitism of the aphid by the primary parasitoid, Lysiphlebus japonicus (Hymenoptera: Aphidiidae), and its larval survival. Appl Entomol Zool 38:347–357

    Article  Google Scholar 

  • Kaneko S (2007) Predator and parasitoid attacking ant-attended aphids: effects of predator presence and attending ant species on emerging parasitoid numbers. Ecol Res 22:451–458

    Article  Google Scholar 

  • Korenaga R, Koizumi M, Ushiyama K, Furuhashi K (1992) A handbook of diseases and insect pests of fruit trees, vol 1. Citrus, loquat and kiwifruit. Japan Plant Protection Association, Tokyo (in Japanese)

    Google Scholar 

  • Liere H, Perfecto I (2008) Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid. Environ Entomol 37:143–149

    Article  PubMed  Google Scholar 

  • Moritsu M (1983) Aphids of Japan in colors. Zenkoku Noson Kyoiku Kyokai, Tokyo (in Japanese)

    Google Scholar 

  • Nixon GEJ (1951) The association of ants with aphids and coccids. Commonwealth Institute of Entomology, London

    Google Scholar 

  • Oliver TH, Leather SR, Cook JM (2012) Ant larval demand reduces aphid colony growth rates in an ant–aphid interaction. Insects 3:120–130

  • Pekas A, Tena A, Aguilar A, Garcia-Marí F (2011) Spatio-temporal patterns and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus orchard. Agric For Entomol 13:89–97

    Article  Google Scholar 

  • Pontin AJ (1959) Some records of predators and parasites adapted to attack aphids attended by ants. Entomol Mon Mag 95:154–155

    Google Scholar 

  • Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, populations and communities. Cambridge University Press, New York

    Book  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 14 Oct 2017

  • Retana J, Cerdá X (2000) Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123:436–444

    Article  PubMed  CAS  Google Scholar 

  • Sakata H, Katayama N (2001) Ant defence system: a mechanism organizing individual responses into efficient collective behavior. Ecol Res 16:395–403

    Article  Google Scholar 

  • Stechmann DH, Völkl W, Starý P (1996) Ant-attendance as a critical factor in the biological control of the banana aphid Pentalonia nigronervosa Coq. (Hom. Aphididae) in Oceania. J Appl Entomol 120:119–123

    Article  Google Scholar 

  • Takada H (1968) Aphidiidae of Japan (Hymenoptera). Insecta Matsumurana 30:67–124

    Google Scholar 

  • Takada H, Hashimoto Y (1985) Association of the root aphid parasitoids Aclitus sappaphis and Paralipsis eikoae (Hymenoptera: Aphidiidae) with the aphid-attending ants Pheidole fervida and Lasius niger (Hymenoptera: Formicidae). Kontyû 53:150–160

    Google Scholar 

  • Takanashi M (1990) Development and reproductive ability of Lysiphlebus japonicus Ashmead (Hymenoptera: Aphidiidae) parasitizing the citrus brown aphid, Toxoptera citricidus (Kirkaldy) (Homoptera: Aphididae). Jpn J Appl Entomol Zool 34:237–243 (in Japanese with English summary)

    Article  Google Scholar 

  • Vinson SB, Scarborough TA (1991) Interactions between Solenopsis invicta (Hymenoptera: Formicidae), Rhopalosiphum maidis (Homoptera: Aphididae), and the parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Aphidiidae). Ann Entomol Soc Am 84:158–164

    Article  Google Scholar 

  • Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J Anim Ecol 61:273–281

    Article  Google Scholar 

  • Völkl W (1995) Behavioral and morphological adaptations of the coccinellid Platynaspis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae). J Insect Behav 8:653–670

    Article  Google Scholar 

  • Völkl W, Mackauer M (1993) Interactions between ants attending Aphis fabae ssp. cirsiiacanthoidis on thistles and foraging parasitoid wasps. J Insect Behav 6:301–312

    Article  Google Scholar 

  • Völkl W, Stechmann DH (1998) Parasitism of the black bean aphid (Aphis fabae) by the Lysiphlebus fabarum (Hym., Aphidiidae): the influence of host plant and habitat. J Appl Entomol 122:201–206

    Article  Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344

    Article  Google Scholar 

  • Wolda H (1988) Insect seasonality: why? Annu Rev Ecol Syst 19:1–18

    Article  Google Scholar 

  • Yao I (2014) Costs and constraints in aphid-ant mutualism. Ecol Res 29:383–391

    Article  Google Scholar 

  • Zhou A, Kuang B, Gao Y, Liang G (2015) Density-dependent benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae). PLoS One 10(4):e0123885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Kaneko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, S. Seasonal differences in the abundance of an ant-adapted parasitoid, Lysiphlebus japonicus (Hymenoptera: Aphidiidae), in ant-attended colonies of the spirea aphid Aphis spiraecola (Hemiptera: Aphididae) on citrus: comparison for two ant species, Lasius japonicus and Pristomyrmex punctatus (Hymenoptera: Formicidae). Appl Entomol Zool 53, 315–321 (2018). https://doi.org/10.1007/s13355-018-0560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-018-0560-1

Keywords

Navigation