Skip to main content

Advertisement

Log in

Obligate gut symbiotic association in the sloe bug Dolycoris baccarum (Hemiptera: Pentatomidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

A number of phytophagous stinkbugs are associated with specific bacterial symbionts in their alimentary tracts. The sloe bug Dolycoris baccarum (Linnaeus), a notorious pest of diverse crops, possesses a number of sac-like tissues, called crypts, in a posterior section of the midgut, wherein a specific bacterial symbiont colonizes. Here we characterized the symbiotic bacterium of D. baccarum by histological analysis, molecular phylogeny, and diagnostic PCR with a specific primer set. The cloning and sequencing analyses of bacterial 16S rRNA genes and fluorescent in situ hybridization demonstrated that the sloe bug is associated with a single species of Gammaproteobacteria in the midgut crypts. Molecular phylogenetic analysis strongly suggested that the symbiont should be placed in the genus Pantoea of the Enterobacteriaceae. Diagnostic PCR and egg surface sterilization with formalin indicated the stinkbug vertically transmits the Pantoea symbiont via egg-smearing. The sterilization-produced aposymbiotic nymphs showed high mortality and no insects reached adulthood. In addition, the Pantoea symbiont was uncultivable outside the insect host, indicating an obligate and intimate host-symbiont association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe Y, Mishiro K, Takanashi M (1995) Symbiont of brown-winged green bug, Plautia stali Scott. Jpn J Appl Entomol Zool 39:109–115

    Article  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bistolas KS, Sakamoto RI, Fernandes JA, Goffredi SK (2014) Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front Microbiol 5:349

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  • Duron O, Noël V (2016) A wide diversity of Pantoea lineages are engaged in mutualistic symbiosis and cospeciation processes with stinkbugs. Environ Microbiol Rep (in press)

  • Fukatsu T, Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol 68:389–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol 64:3599–3606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glasgow H (1914) The gastric caeca and the caecal bacteria of the Heteroptera. Biol Bull 3:101–171

    Article  Google Scholar 

  • Hayashi T, Hosokawa T, Meng XY, Koga R, Fukatsu T (2015) Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs. Appl Environ Microbiol 81:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont co-speciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:e337

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosokawa T, Hironaka M, Mukai H, Inadomi K, Suzuki N, Fukatsu T (2012) Mothers never miss the moment: a fine-tuned mechanism for vertical symbiont transmission in a subsocial insect. Anim Behav 83:293–300

    Article  Google Scholar 

  • Hosokawa T, Hironaka M, Inadomi K, Mukai H, Nikoh N, Fukatsu T (2013) Diverse strategies for vertical symbiont transmission among subsocial stinkbugs. PLoS One 8:e65081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T (2016) Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol 1:15011

    Article  PubMed  Google Scholar 

  • Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T (2010) Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus. Appl Environ Microbiol 76:3486–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY, Maeda T, Yamaguchi K, Shigenobu S, Ito M, Fukatsu T (2014) Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol 24:2465–2470

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y (2009) Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 24:195–204

    Article  PubMed  Google Scholar 

  • Kikuchi Y, Fukatsu T (2014) Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris. Mol Ecol 23:1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires beneficial gut symbiont from environment every generation. Appl Environ Microbiol 73:4308–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T (2009) Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2011) An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J 5:446–460

    Article  PubMed  Google Scholar 

  • Kikuchi Y, Hosokawa T, Nikoh N, Fukatsu T (2012) Gut symbiotic bacteria in the cabbage bugs Eurydema rugosa and Eurydema dominulus (Heteroptera: Pentatomidae). Appl Entomol Zool 47:1–8

    Article  Google Scholar 

  • Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T (2012) Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 78:4149–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panizzi AR (1997) Wild hosts of pentatomids: ecological significance and role in their pest status on crops. Ann Rev Entomol 42:99–122

    Article  CAS  Google Scholar 

  • Prado SS, Almeida RPP (2009) Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Entomol Exp Appl 132:21–29

    Article  Google Scholar 

  • Prado SS, Daniel R, Almeida RPP (2006) Vertical transmission of a pentatomid caeca-associated symbiont. Ann Entomol Soc Am 99:577–585

    Article  Google Scholar 

  • Prado SS, Hung KY, Daugherty MP, Almeida RPP (2010) Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Appl Environ Microbiol 76:1261–1266

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Rider DA (2015) Pentatomoidea home page. North Dakota State University, North Dakota. http://www.ndsu.nodak.edu/ndsu/rider/Pentatomoidea/

  • Robinson-Rechavi M, Huchon D (2000) RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297

    Article  CAS  PubMed  Google Scholar 

  • Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M (2013) Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol 15:1956–1968

    Article  PubMed  Google Scholar 

  • Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M (2014) Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci 281:20141838

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Ishikawa H (1995) Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 41:41–46

    Article  CAS  Google Scholar 

  • Schaefer CW, Panizzi AR (2000) Heteroptera of economic importance. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Tada A, Kikuchi Y, Hosokawa T, Musolin DL, Fujisaki K, Fukatsu T (2011) Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbug Nezara viridula (Heteroptera: Pentatomidae). Appl Entomol Zool 6:483–488

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taylor CM, Coffey PL, Delay BD, Dively GP (2014) The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stal). PLoS One 9:e90312

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomokuni M, Yasunaga T, Takai M, Yamashita I, Kawamura M, Kawasawa T (1993) Terrestrial heteropterans: A field guide to Japanese bugs. Zenkoku noson Kyoiku Kyokai, Tokyo

    Google Scholar 

  • Weirauch C, Schuh RT (2011) Systematics and evolution of Heteroptera: 25 years of progress. Ann Rev Entomol 56:487–510

    Article  CAS  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Toju, K. Takeshita, E. Hara, Y.G. Baba, S. Kudo, and M. Baba for insect samples, and N. Nakamura and M. Okamoto for technical assistance. This study was supported by the Japan Society for the Promotion of Science (JSPS), project 15H05638.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitomo Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, H., Matsuura, Y., Hosokawa, T. et al. Obligate gut symbiotic association in the sloe bug Dolycoris baccarum (Hemiptera: Pentatomidae). Appl Entomol Zool 52, 51–59 (2017). https://doi.org/10.1007/s13355-016-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-016-0453-0

Keywords

Navigation