Skip to main content
Log in

Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Athetis dissimilis (Lepidoptera: Noctuidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Insect olfactory and gustatory systems play important roles in communication with the external environment. Two families of small soluble proteins, the chemosensory proteins (CSPs) and odorant binding proteins (OBPs), are believed to mediate chemoreception in insects. In this study, we identified ten putative CSP and five classic OBP genes by sequencing transcripts from the antennae of Athetis dissimilis Hampson, an emerging lepidopteran crop pest. The results of real-time quantitative PCR revealed that CSP genes were expressed broadly in A. dissimilis: six of the ten CSP genes were highly expressed in the antennae, including three that exhibited male-biased expression and three that exhibited female-biased expression. In addition to the antennae, CSP genes were also highly expressed in the proboscis, labial palpi, abdomen, legs, and wings of A. dissimilis. All OBP genes were primarily expressed in the female and male antennae of A. dissimilis. Three OBP genes exhibited female-biased expression patterns, while one was male-biased in the antennae. Surprisingly, the expression of AdisOBP6 was very high in the testes of A. dissimilis. This study is the first characterization of CSPs and OBPs in A. dissimilis and provides the foundation for a better understanding of the molecular mechanisms of chemoreception in A. dissimilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genom 14:198

    Article  CAS  Google Scholar 

  • Andersson MN, Videvall E, Walden KK, Harris MO, Robertson HM, Löfstedt C (2014) Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae). BMC Genom 15:501

    Article  Google Scholar 

  • Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754

    Article  CAS  PubMed  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S et al (2004) UniProt: the universal protein knowledgebase. Nucl Acids Res 32:D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashbuener M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • Ban L, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan Y, Pelosi P (2003) Chemosensory proteins of Locusta migratoria. Insect Mol Biol 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Broekaert WF, Lambrechts D, Verbelen JP, Peumans WJ (1988a) Datura stramonium agglutinin: location in the seed and release upon imbibition. Plant Physiol 86:569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broekaert WF, Vanparijs J, Allen AK, Peumans WJ (1988b) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol Mol Plant Path 33:319–331

    Article  CAS  Google Scholar 

  • Cho YH, Kim YJ, Han YG, Jeong JC, Cha JY, Nam SH (2010) A faunistic study of moths on Wolchulsan National Park. J Natl Park Res 1:108–126

    Google Scholar 

  • Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P (2011) Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silk moth Bombyx mori. Chem Senses 36:335–344

    Article  CAS  PubMed  Google Scholar 

  • Danty E, Briand L, Michard-Vanhée C, Perez V, Arnold G, Gaudemer O, Huet D, Huet JC, Ouali C, Masson C, Pernollet JC (1999) Cloning and expression of a queen pheromone-binding protein in the honeybee: an olfactory-specific, developmentally regulated protein. J Neurosci 19:7468–7475

    CAS  PubMed  Google Scholar 

  • Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, He FC et al (2006) Integrated nr database in protein annotation system and its localization. Comput Eng 32:71–74

    Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  Google Scholar 

  • Feng B, Lin XD, Zheng KD, Qian K, Chang YC, Du YJ (2015) Transcriptome and expression profiling analysis link patterns of gene expression to antennal responses in Spodoptera litura. BMC Genom 16:269–281

    Article  Google Scholar 

  • Field LM, Pickett JA, Wadhams LJ (2000) Molecular studies in insect olfaction. Insect Mol Biol 9:545–551

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR et al (2013) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  PubMed  PubMed Central  Google Scholar 

  • Garczynski SF, Coates BS, Unruh TR, Schaeffer S, Jiwan D, Koepke T, Dhingra A (2013) Application of Cydia pomonella expressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth. Insect Sci 20:559–574

    Article  CAS  PubMed  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Lin Y, Xia QY, Xiang ZH (2007) Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol 37:266–277

    Article  CAS  PubMed  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH (2009a) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genom 10:332

    Article  Google Scholar 

  • Gong ZJ, Zhou WW, Yu HZ, Mao CG, Zhang CX, Cheng JA, Zhu ZR (2009b) Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Insect Mol Biol 18:405–417

    Article  CAS  PubMed  Google Scholar 

  • Gong ZJ, Miao J, Duan Y, Jiang YL, Li T, Wu YQ (2014) Identification and expression profile analysis of putative odorant-binding proteins in Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Biochem Biophys Res Commun 444:164–170

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full length transcriptome assembly from RNA Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu SH, Wang SY, Zhang XY, Ji P, Liu JT, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ (2012) Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS One 7:e42871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L (2011) CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet 7:e1001291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, He P (2014) Molecular characterization, expression profiling, and binding properties of odorant binding protein genes in the white backed planthopper, Sogatella furcifera. Comp Biochem Physiol B 174:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hull JJ, Perera OP, Snodgrass GL (2014) Cloning and expression profiling of odorant-binding proteins in the tarnished plant bug, Lygus lineolaris. Insect Mol Biol 23:78–97

    Article  CAS  PubMed  Google Scholar 

  • Iovinella I, Bozza F, Caputo B, della Torre A, Pelosi P (2013) Ligand-binding study of Anopheles gambiae chemosensory proteins. Chem Senses 38:409–419

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SP, Liggins AP, Zhou JJ, Pickett JA, Jin X, Field LM (2005) OS-D-like genes and their expression in aphids (Hemiptera: Aphididae). Insect Mol Biol 14:423–432

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Brandazza A, Navarrini A, Ban L, Zhang S, Steinbrecht RA, Zhang L, Pelosi P (2005) Expression and immunolocalisation of odorant-binding and chemosensory proteins in locusts. Cell Mol Life Sci 62:1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS et al (2004) A comprehensive evolutionary classification of protein encoded in complete eukaryotic genomes. Genome Biol 5:R7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leitch O, Papanicolaou A, Lennard C, Kirkbride KP, Anderson A (2015) Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia. BMC Genom 16:255

    Article  Google Scholar 

  • Li X, Lu D, Liu X, Zhang Q, Zhou X (2011) Ultrastructural characterization of olfactory sensilla and immunolocalization of odorant binding and chemosensory proteins from an ectoparasitoid Scleroderma guani (Hymenoptera: Bethylidae). Int J Biol Sci 7:848–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang L, Ni C, Shang H, Zhuang S, Li J (2013) Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). Int J Biol Macromol 56:114–121

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Yu Y, Zhang AS, Men XY, Zhou XH, Zhai YF, Zhuang QY, Wang ZY, Li LL (2014) Morphologically alike species of Athetis lepigone (Möschler)-Athetis dissimilis (Hampson) found in Shandong Province of China. Plant Protect 40:193–195

    CAS  Google Scholar 

  • Li L, Liu Z, Sun J (2015) Olfactory cues in host and host-plant recognition of a polyphagous ectoparasitoid Scleroderma guani. Bio Control 60:307–316

    Google Scholar 

  • Liu XL, Luo Q, Zhong GH, Rizwan-ul-Haq M, Hu MY (2010) Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Biochem 148:189–200

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gu S, Zhang Y, Guo Y, Wang G (2012) Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS One 7:e48260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Shi XX, Zhu QZ, Jiao WJ, Zhu ZJ, Yu H, Wang GR, Zhu ZR (2015) Identification and expression profiles of putative chemosensory protein genes in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). J Asia-Pac Entomol 18:99–105

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (−ΔΔC) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maleszka R, Stange G (1997) Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene 202:39–43

    Article  CAS  PubMed  Google Scholar 

  • Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, Francois MC, Ramachandran S, Maida R, Steinbrecht RA (2000) Chemosensory proteins from the proboscis of Mamestra brassicae. Chem Senses 25:541–553

    Article  CAS  PubMed  Google Scholar 

  • Nomura A, Kawasaki K, Kubo T, Natori S (1992) Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta Americana (American Cockroach). Int J Dev Biol 36:391–398

    CAS  PubMed  Google Scholar 

  • Ozaki K, Utoguchi A, Yamada A, Yoshikawa H (2008) Identification and genomic structure of chemosensory proteins (CSP) and odorant binding proteins (OBP) genes expressed in foreleg tarsi of the swallowtail butterfly Papilio xuthus. Insect Biochem Mol Biol 38:969–976

    Article  CAS  PubMed  Google Scholar 

  • Pelletier J, Leal WS (2011) Characterization of olfactory genes in the antennae of the southern house mosquito, Culex quinquefasciatus. J Insect Physiol 57:915–929

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Iovinella I, Felicioli A (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Poivet E, Gallot A, Montagné N, Glaser N, Legeai F, Jacquin-Joly E (2013) A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS One 8:e60263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem Senses 29:117–125

    Article  PubMed  Google Scholar 

  • Robertson HM, Martos R, Sears CR, Todres EZ, Walden KO, Nardi JB (1999) Diversity of odourant binding proteins revealed by an expressed sequence tag project on male manduca sexta moth antennae. Insect Mol Biol 8:501–518

    Article  CAS  PubMed  Google Scholar 

  • Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, Imler JL (2003) Pherokine-2 and -3: two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur J Biochem 270:3398–3407

    Article  CAS  PubMed  Google Scholar 

  • Scaloni A, Monti M, Angeli S, Pelosi P (1999) Structural analysis and disulfide bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun 266:386–391

    Article  CAS  PubMed  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2000) Flight response of parasitoids toward plant–herbivore complexes: a comparative study of two parasitoid herbivore systems on cabbage plants. Appl Entomol Zool 35:87–92

    Article  Google Scholar 

  • Steinbrecht RA (1998) Odorant-binding proteins: expression and function. Ann NY Acad Sci 855:323–332

    Article  CAS  PubMed  Google Scholar 

  • Sun YF, Biasio FD, Qiao HL, Iovinella I, Yang SX, Ling Y, Riviello L, Battaglia D, Falabella P, Yang XL, Pelosi P (2012) Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-β-arnesene and structural analogues. PLoS One 7:e32759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M (1975) Athetis dissimilis Hampson, a new nuisance? Jpn Soc Med Entomol Zool 26:66

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA (2000) The COG database: a tool for genome scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 24:4876–4882

    Article  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert L, Latro G, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Elsevier, London, pp 753–804

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    Article  CAS  PubMed  Google Scholar 

  • Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng QL, Plettner E (2004) Analysis of the OS-D-like gene family. J Chem Ecol 30:889–911

    Article  CAS  PubMed  Google Scholar 

  • Zhang YB, Dong XL, Liu JX, Hu MY, Zhong GH, Geng P, Yi X (2012) Molecular cloning, expression and molecular modeling of chemosensory protein from Spodoptera litura and its binding properties with rhodojaponin III. PLoS One 7:e47611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YN, Ye ZF, Yang K, Dong SL (2014) Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene 536:279–286

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ (2010) Odorant-binding proteins in insects. Vitam Horm 83:241–272

    Article  CAS  PubMed  Google Scholar 

  • Zhou SH, Zhang J, Zhang SG, Zhang L (2008) Expression of chemosensory proteins in hairs on wings of Locusta migratoria (Orthoptera: Acrididae). J Appl Entomol 132:439–450

    Article  Google Scholar 

  • Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545

    Article  CAS  PubMed  Google Scholar 

  • Zhou SS, Sun Z, Ma WH, Chen W, Wang MQ (2014) De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes. Comp Biochem Phys D 9:31–39

    CAS  Google Scholar 

  • Zhou CX, Min SF, Tang YL, Wang MQ (2015) Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. Comp Biochem Phys D 16:10–19

    CAS  Google Scholar 

  • Zhu JY, Zhang LF, Ze SZ, Wang DW, Yang B (2013) Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. J Insect Physiol 59:722–728

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Ze SZ, Yang B (2015) Identification and expression profiling of six chemosensory protein genes in the beet armyworm, Spodoptera exigua. J Asia-Pac Entomol 18:61–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Startup Project of Doctor Scientific Research (4026-13480047) and the Youth Scientific Fund (2015QN029) of Henan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongji Cheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Song, Y., Du, J. et al. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Athetis dissimilis (Lepidoptera: Noctuidae). Appl Entomol Zool 51, 409–420 (2016). https://doi.org/10.1007/s13355-016-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-016-0413-8

Keywords

Navigation