Interaction between Bactrocera oleae (Diptera: Tephritidae) infestation and fruit mineral element content in Olea europaea (Lamiales: Oleaceae) cultivars of global interest

Abstract

Olive fruit fly Bactrocera oleae (Gmelin) (Diptera: Tephritidae) infestation levels were quantified in rainfed adult olive (Olea europaea L.) (Lamiales: Oleaceae) trees of seven cultivars originating from Spain, Italy, Greece, Portugal and France to determine their relationships with fruit length, width, weight, oil and mineral element content and to investigate the effects of infestation on fruit properties. Fruit from the cultivars Koroneiki, Mastoidis, Picholine, Manzanilla, Arbequina, Branquita and Leccino was collected in November 2013 in Greece. Marked genotypic variation was observed for both total and alive fruit infestation with Manzanilla being the most susceptible and Arbequina the most resistant among the cultivars studied. Marked differences were recorded in the fruit mineral element content between the cultivars studied. B. oleae infestation was positively correlated with the fruit length, width, fresh weight, and K and Fe content. Also, B. oleae infestation caused significant changes in the P, K, Fe and Mg concentration in fruits, while an overall decreasing trend was observed for N. B. oleae infestation caused no significant changes in the fruit oil content of the studied cultivars. Results presented in this study supplemented with targeted integrated research on breeding resistant genotypes and developing improved pest control tools could contribute to important savings of resources as well as improvement of yields and food quality and safety.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aluja M, Mangan RL (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Ann Rev Entomol 53:473–502

    CAS  Article  Google Scholar 

  2. Arias-Calderón R, León L, Bejarano-Alcázar J, Belaj A, De la Rosa R, Rodríguez-Jurado D (2015) Resistance to Verticillium wilt in olive progenies from open-pollination. Sci Hortic 185:34–42

    Article  Google Scholar 

  3. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Ann Rev Entomol 47:817–844

    CAS  Article  Google Scholar 

  4. Bartolini G, Prevost G, Messeri C, Carignani G (2010) Olive Germplasm (Olea europaea L.). Cultivars, synonyms, cultivation areas, descriptors. http://www.oleadb.it/. Accessed 25 Aug 2015

  5. Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc R Soc B 277:1545–1552

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2014) Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol 27:2695–2705

    CAS  Article  PubMed  Google Scholar 

  7. Bueno AM, Jones O (2002) Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC wprs Bulletin 25:1–11

    Google Scholar 

  8. Burrack JH, Zalom FG (2008) Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercially important olive varieties in California. J Econ Entomol 101(3):750–758

    Article  PubMed  Google Scholar 

  9. Clancy KM (1991) Douglas-fir nutrients and terpenes as potential factors influencing western spruce budworm defoliation. In: Baranchikov YN, Mattson WJ, Hain FP, Payne TL (eds) Forest insect guilds: patterns of interaction with host trees. US Dep Agric For Serv Gen Tech Rep NE-153

  10. Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V, Coppola M, Garonna A, Baldoni L, Scaloni A, Rao R (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol 12(86):1–17

    Google Scholar 

  11. Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Ann Rev Entomol 55:151–169

    CAS  Article  Google Scholar 

  12. FAOSTAT (2015) Food and Agriculture organization of the United Nations. Statistics Division. http://faostat3.fao.org/download/Q/QC/E. Accessed 19 Aug 2015

  13. Fernandez-Escobar R, Sanchez-Zamora MA, Garcia-Novelo JM, Molina-Soria C (2015) Nutrient removal from olive trees by fruit yield and pruning. HortSci 50:474–478

    CAS  Google Scholar 

  14. Fox LR, Letourneau DK, Eisenbach J, van Nouhuys S (1990) Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality. Oecologia 83(3):414–419

    Article  Google Scholar 

  15. Gaines TP, Mitchell GA (1979) Chemical methods for soil and plant analysis. Agronomy Handbook No. 1, Univ. of Georgia, Coastal Plain Station, Tiftus, p 105

  16. Genc H (2008) Modified agar-based diet for small scale laboratory rearing of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Florida Entomol 91:651–656

    Google Scholar 

  17. Goncalves MF, Malheiro R, Casal S, Torres L, Pereira JA (2012) Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrancosa, Madural and Verdeal Transmontana). Sci Hortic 145:127–135

    Article  Google Scholar 

  18. Kakani EG, Zygouridis NE, Tsoumani KT, Seraphides N, Zalom FG, Mathiopoulos KD (2010) Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. Pest Manag Sci 66:447–453

    CAS  PubMed  Google Scholar 

  19. Kakani EG, Sagri E, Omirou M, Ioannides IM, Mathiopoulos KD (2013) Detection and geographical distribution of the organophosphate resistance-associated Δ3Q ace mutation in the olive fruit fly, Bactrocera oleae (Rossi). Pest Manag Sci 70:743–750

    Article  PubMed  Google Scholar 

  20. Kombargi WS, Michelakis SE, Petrakis CA (1998) Effect of olive surface waxes on oviposition by Bactrocera olaea (Diptera: Tephritidae). J Econ Entomol 91:993–998

    CAS  Article  Google Scholar 

  21. Loumou A, Giourga C (2003) Olive groves: “The life and identity of the Mediterranean”. Agric Hum Values 20:87–95

    Article  Google Scholar 

  22. Malheiro R, Casal S, Baptista P, Pereira JA (2015a) A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trend Food Sci Technol 44:226–242

    CAS  Article  Google Scholar 

  23. Malheiro R, Casal S, Cunha SC, Baptista P, Pereira JA (2015b) Olive Volatiles from Portuguese cultivars Cobrançosa, Madural and Verdeal Transmontana: role in Oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PLoS One 10:e0125070

    Article  PubMed  PubMed Central  Google Scholar 

  24. Massei G, Hartley SE (2000) Disarmed by domestication? Induced responses to browsing in wild and cultivated olive. Oecologia 122:225–231

    Article  Google Scholar 

  25. Moral J, Alsalimiya M, Roca LF, Díez CM, León L, de la Rosa R, Barranco D, Rallo L, Trapero A (2015) Relative susceptibility of new olive cultivars to Spilocaea oleagina, Colletotrichum acutatum, and Pseudocercospora cladosporioides. Plant Dis 99:58–64

    Article  Google Scholar 

  26. Morales-Sillero A, Jimenez R, Fernandez JE, Troncoso A, Rejano L (2008) Effect of fertigation on the ‘Manzanilla de Sevilla’ table olive quality before and after “Spanish-style” green processing. HortSci 43:153–158

    CAS  Google Scholar 

  27. Neuenshwander P, Michelakis S, Holloway P, Berchtold W (1985) Factors affecting the susceptibility of fruits of different olive varieties to attack by Dacus oleae (Gmel.) (Diptera: Tephritidae). Zeitschrift Angewandte Entomol 100:174–188

    Article  Google Scholar 

  28. Pavlidi N, Dermauw W, Rombauts S, Chrisargiris A, Van Leeuwen T, Vontas J (2013) Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families. PLoS One 8:e66533

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Pucci C, Ambrosi G (1982) Ovideposizione del Dacus oleae (Gmel.) e dimensioni delle drupe. Frustula Entomol 4:181–195

    Google Scholar 

  30. Restrepo-Diaz H, Benlloch M, Navarro C, Fernandez-Escobar R (2008) Potassium fertilization of rainfed olive orchards. Sci Hortic 116:399–403

    CAS  Article  Google Scholar 

  31. Rizzo R, Caleca V, Lombardo A (2012) Relation of fruit color, elongation, hardness, and volume to the infestation of olive cultivars by the olive fruit fly, Bactrocera oleae. Entomol Exp Appl 145:15–22

    Article  Google Scholar 

  32. Scarpati ML, LoScalzo R, Vita G, Gambacorta A (1996) Chemiotropic behavior of female olive fly (Bactrocera oleae Gmel) on Olea europaea L. J Chem Ecol 22:1027–1036

    CAS  Article  PubMed  Google Scholar 

  33. Strauss SY (1987) Direct and indirect effects of host plant fertilization on an insect community. Ecol 68:1670–1678

    Article  Google Scholar 

  34. Tzanakakis ME (2006) Insects and mites feeding on olive. Distribution, importance, habits, seasonal development and dormancy. Brill Academic Publishers, Boston

  35. UPOV (1999) Technical Guideline for the conduct of tests for distinctness, homogeneity and stability. TG/099/3

  36. Wang XG, Nadel H, Johnson MW, Daane KM, Hoelmer K, Walton VM, Pickett CH, Sime KR (2009) Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl Ecol 10:216–227

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Georgios C. Koubouris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garantonakis, N., Varikou, K., Markakis, E. et al. Interaction between Bactrocera oleae (Diptera: Tephritidae) infestation and fruit mineral element content in Olea europaea (Lamiales: Oleaceae) cultivars of global interest. Appl Entomol Zool 51, 257–265 (2016). https://doi.org/10.1007/s13355-016-0397-4

Download citation

Keywords

  • Olive fruit fly
  • Olive cultivars
  • Fruit size
  • Oil content
  • Mineral elements