Advertisement

Applied Entomology and Zoology

, Volume 51, Issue 2, pp 257–265 | Cite as

Interaction between Bactrocera oleae (Diptera: Tephritidae) infestation and fruit mineral element content in Olea europaea (Lamiales: Oleaceae) cultivars of global interest

  • Nikos Garantonakis
  • Kyriaki Varikou
  • Emmanouil Markakis
  • Athanasia Birouraki
  • Chrysa Sergentani
  • Georgios Psarras
  • Georgios C. KoubourisEmail author
Original Research Paper

Abstract

Olive fruit fly Bactrocera oleae (Gmelin) (Diptera: Tephritidae) infestation levels were quantified in rainfed adult olive (Olea europaea L.) (Lamiales: Oleaceae) trees of seven cultivars originating from Spain, Italy, Greece, Portugal and France to determine their relationships with fruit length, width, weight, oil and mineral element content and to investigate the effects of infestation on fruit properties. Fruit from the cultivars Koroneiki, Mastoidis, Picholine, Manzanilla, Arbequina, Branquita and Leccino was collected in November 2013 in Greece. Marked genotypic variation was observed for both total and alive fruit infestation with Manzanilla being the most susceptible and Arbequina the most resistant among the cultivars studied. Marked differences were recorded in the fruit mineral element content between the cultivars studied. B. oleae infestation was positively correlated with the fruit length, width, fresh weight, and K and Fe content. Also, B. oleae infestation caused significant changes in the P, K, Fe and Mg concentration in fruits, while an overall decreasing trend was observed for N. B. oleae infestation caused no significant changes in the fruit oil content of the studied cultivars. Results presented in this study supplemented with targeted integrated research on breeding resistant genotypes and developing improved pest control tools could contribute to important savings of resources as well as improvement of yields and food quality and safety.

Keywords

Olive fruit fly Olive cultivars Fruit size Oil content Mineral elements 

Supplementary material

13355_2016_397_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Aluja M, Mangan RL (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Ann Rev Entomol 53:473–502CrossRefGoogle Scholar
  2. Arias-Calderón R, León L, Bejarano-Alcázar J, Belaj A, De la Rosa R, Rodríguez-Jurado D (2015) Resistance to Verticillium wilt in olive progenies from open-pollination. Sci Hortic 185:34–42CrossRefGoogle Scholar
  3. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Ann Rev Entomol 47:817–844CrossRefGoogle Scholar
  4. Bartolini G, Prevost G, Messeri C, Carignani G (2010) Olive Germplasm (Olea europaea L.). Cultivars, synonyms, cultivation areas, descriptors. http://www.oleadb.it/. Accessed 25 Aug 2015
  5. Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc R Soc B 277:1545–1552CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2014) Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol 27:2695–2705CrossRefPubMedGoogle Scholar
  7. Bueno AM, Jones O (2002) Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC wprs Bulletin 25:1–11Google Scholar
  8. Burrack JH, Zalom FG (2008) Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercially important olive varieties in California. J Econ Entomol 101(3):750–758CrossRefPubMedGoogle Scholar
  9. Clancy KM (1991) Douglas-fir nutrients and terpenes as potential factors influencing western spruce budworm defoliation. In: Baranchikov YN, Mattson WJ, Hain FP, Payne TL (eds) Forest insect guilds: patterns of interaction with host trees. US Dep Agric For Serv Gen Tech Rep NE-153Google Scholar
  10. Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V, Coppola M, Garonna A, Baldoni L, Scaloni A, Rao R (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol 12(86):1–17Google Scholar
  11. Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Ann Rev Entomol 55:151–169CrossRefGoogle Scholar
  12. FAOSTAT (2015) Food and Agriculture organization of the United Nations. Statistics Division. http://faostat3.fao.org/download/Q/QC/E. Accessed 19 Aug 2015
  13. Fernandez-Escobar R, Sanchez-Zamora MA, Garcia-Novelo JM, Molina-Soria C (2015) Nutrient removal from olive trees by fruit yield and pruning. HortSci 50:474–478Google Scholar
  14. Fox LR, Letourneau DK, Eisenbach J, van Nouhuys S (1990) Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality. Oecologia 83(3):414–419CrossRefGoogle Scholar
  15. Gaines TP, Mitchell GA (1979) Chemical methods for soil and plant analysis. Agronomy Handbook No. 1, Univ. of Georgia, Coastal Plain Station, Tiftus, p 105Google Scholar
  16. Genc H (2008) Modified agar-based diet for small scale laboratory rearing of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Florida Entomol 91:651–656Google Scholar
  17. Goncalves MF, Malheiro R, Casal S, Torres L, Pereira JA (2012) Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrancosa, Madural and Verdeal Transmontana). Sci Hortic 145:127–135CrossRefGoogle Scholar
  18. Kakani EG, Zygouridis NE, Tsoumani KT, Seraphides N, Zalom FG, Mathiopoulos KD (2010) Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. Pest Manag Sci 66:447–453PubMedGoogle Scholar
  19. Kakani EG, Sagri E, Omirou M, Ioannides IM, Mathiopoulos KD (2013) Detection and geographical distribution of the organophosphate resistance-associated Δ3Q ace mutation in the olive fruit fly, Bactrocera oleae (Rossi). Pest Manag Sci 70:743–750CrossRefPubMedGoogle Scholar
  20. Kombargi WS, Michelakis SE, Petrakis CA (1998) Effect of olive surface waxes on oviposition by Bactrocera olaea (Diptera: Tephritidae). J Econ Entomol 91:993–998CrossRefGoogle Scholar
  21. Loumou A, Giourga C (2003) Olive groves: “The life and identity of the Mediterranean”. Agric Hum Values 20:87–95CrossRefGoogle Scholar
  22. Malheiro R, Casal S, Baptista P, Pereira JA (2015a) A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trend Food Sci Technol 44:226–242CrossRefGoogle Scholar
  23. Malheiro R, Casal S, Cunha SC, Baptista P, Pereira JA (2015b) Olive Volatiles from Portuguese cultivars Cobrançosa, Madural and Verdeal Transmontana: role in Oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PLoS One 10:e0125070CrossRefPubMedPubMedCentralGoogle Scholar
  24. Massei G, Hartley SE (2000) Disarmed by domestication? Induced responses to browsing in wild and cultivated olive. Oecologia 122:225–231CrossRefGoogle Scholar
  25. Moral J, Alsalimiya M, Roca LF, Díez CM, León L, de la Rosa R, Barranco D, Rallo L, Trapero A (2015) Relative susceptibility of new olive cultivars to Spilocaea oleagina, Colletotrichum acutatum, and Pseudocercospora cladosporioides. Plant Dis 99:58–64CrossRefGoogle Scholar
  26. Morales-Sillero A, Jimenez R, Fernandez JE, Troncoso A, Rejano L (2008) Effect of fertigation on the ‘Manzanilla de Sevilla’ table olive quality before and after “Spanish-style” green processing. HortSci 43:153–158Google Scholar
  27. Neuenshwander P, Michelakis S, Holloway P, Berchtold W (1985) Factors affecting the susceptibility of fruits of different olive varieties to attack by Dacus oleae (Gmel.) (Diptera: Tephritidae). Zeitschrift Angewandte Entomol 100:174–188CrossRefGoogle Scholar
  28. Pavlidi N, Dermauw W, Rombauts S, Chrisargiris A, Van Leeuwen T, Vontas J (2013) Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families. PLoS One 8:e66533CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pucci C, Ambrosi G (1982) Ovideposizione del Dacus oleae (Gmel.) e dimensioni delle drupe. Frustula Entomol 4:181–195Google Scholar
  30. Restrepo-Diaz H, Benlloch M, Navarro C, Fernandez-Escobar R (2008) Potassium fertilization of rainfed olive orchards. Sci Hortic 116:399–403CrossRefGoogle Scholar
  31. Rizzo R, Caleca V, Lombardo A (2012) Relation of fruit color, elongation, hardness, and volume to the infestation of olive cultivars by the olive fruit fly, Bactrocera oleae. Entomol Exp Appl 145:15–22CrossRefGoogle Scholar
  32. Scarpati ML, LoScalzo R, Vita G, Gambacorta A (1996) Chemiotropic behavior of female olive fly (Bactrocera oleae Gmel) on Olea europaea L. J Chem Ecol 22:1027–1036CrossRefPubMedGoogle Scholar
  33. Strauss SY (1987) Direct and indirect effects of host plant fertilization on an insect community. Ecol 68:1670–1678CrossRefGoogle Scholar
  34. Tzanakakis ME (2006) Insects and mites feeding on olive. Distribution, importance, habits, seasonal development and dormancy. Brill Academic Publishers, BostonGoogle Scholar
  35. UPOV (1999) Technical Guideline for the conduct of tests for distinctness, homogeneity and stability. TG/099/3Google Scholar
  36. Wang XG, Nadel H, Johnson MW, Daane KM, Hoelmer K, Walton VM, Pickett CH, Sime KR (2009) Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl Ecol 10:216–227CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2016

Authors and Affiliations

  • Nikos Garantonakis
    • 1
  • Kyriaki Varikou
    • 1
  • Emmanouil Markakis
    • 1
  • Athanasia Birouraki
    • 1
  • Chrysa Sergentani
    • 1
  • Georgios Psarras
    • 1
  • Georgios C. Koubouris
    • 1
    Email author
  1. 1.Institute of Olive Tree, Subtropical Plants and ViticultureHellenic Agricultural Organization “Demeter”ChaniaGreece

Personalised recommendations