Applied Entomology and Zoology

, Volume 51, Issue 1, pp 91–98 | Cite as

Oxalic acid as a larval feeding stimulant for the pale grass blue butterfly Zizeeria maha (Lepidoptera: Lycaenidae)

  • Mei Yamaguchi
  • Shigeru MatsuyamaEmail author
  • Keiko Yamaji
Original Research Paper


Larvae of the pale grass blue butterfly, Zizeeria maha (Kollar) (Lepidoptera: Lycaenidae), feed exclusively on Oxalis corniculata L. (Oxalidales: Oxalidaceae), which accumulates oxalic acid as with other Oxalidaceae species. Larvae were stimulated to feed on artificial diets containing a crude methanolic extract from host plant leaves. Fractionations and bioassays revealed that the strong feeding activity was found in the water layer, from which oxalic acid was detected as a major compound. Removal of oxalic acid as calcium oxalate precipitates by addition of calcium chloride into the water layer resulted in a significant decrease in feeding activity on the filtrate. Re-addition of oxalic acid to the filtrate recovered the feeding activity. The addition of 260 μmol oxalic acid, corresponding to 1 g fresh leaves of Oxalis, to 1 g of artificial diet significantly stimulated feeding compared with the intact artificial diet. Therefore, oxalic acid was concluded to be a major feeding stimulant for Zizeeria maha larvae.


Oxalic acid Feeding stimulant Zizeeria maha Oxalis corniculata Lycaenidae 



The authors thank Dr. Harunobu Shibao of the University of Tokyo for useful comments and review of the manuscript. This work was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 13J05767).


  1. Ackery PR (1988) Hostplants and classification: a review of nymphalid butterflies. Biol J Linn Soc 33:95–203CrossRefGoogle Scholar
  2. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302CrossRefPubMedGoogle Scholar
  3. Baker CJL (1952) The determination of oxalates in fresh plant material. Analyst 77:340–344CrossRefGoogle Scholar
  4. Bull LB (1929) Poisoning of sheep by soursobs (Oxalis cernua): Chronic oxalic acid poisoning. Aust Vet J 5:60–69CrossRefGoogle Scholar
  5. Datta PK, Meeuse BJD, Engstrom-Heg V, Hilal SH (1955) Moss oxalic acid oxidase—a flavoprotein. Biochim Biophys Acta 17:602–603CrossRefPubMedGoogle Scholar
  6. David WAL, Gardiner BOC (1966) Mustard oil glycosides as feeding stimulants for Pieris brassicae larvae in a semi-synthetic diet. Entomol Exp Appl 9:247–255CrossRefGoogle Scholar
  7. Duncan AJ, Frutos P, Young SA (1997) Rates of oxalic acid degradation in the rumen of sheep and goats in response to different levels of oxalic acid administration. Anim Sci 65:451–455CrossRefGoogle Scholar
  8. Feeny P (1991) Chemical constraints on the evolution of swallowtail butterflies. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 315–340Google Scholar
  9. Fiedler K (1996) Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. Entomol Exp Appl 80:259–267CrossRefGoogle Scholar
  10. Flück H (1963) Intrinsic and extrinsic factors affecting the production of secondary plant products. In: Swain T (ed) Chemical plant taxonomy. Academic Press, New York, pp 167–186Google Scholar
  11. Gershoff NS, Prien LE (1967) Effect of daily MgO and vitamin B6 administration to patients with recurring calcium oxalate kidney stones. Am J Clin Nutr 20:393–399PubMedGoogle Scholar
  12. Hagler L, Herman RH (1973) Oxalate metabolism I. Am J Clin Nutr 26:758–765PubMedGoogle Scholar
  13. Hare JD (1998) Bioassay methods with terrestrial invertebrates. In: Haynes KF, Millar JG (eds) Methods in chemical ecology, vol 2. Springer, New York, pp 212–270Google Scholar
  14. Hemming JDC, Lindroth RL (1999) Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J Chem Ecol 25:1687–1714CrossRefGoogle Scholar
  15. Hicks KL (1974) Mustard oil glucosides: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Ann Entomol Soc Am 67:261–264CrossRefGoogle Scholar
  16. Hodgkinson A (1970) Determination of oxalic acid in biological material. Clin Chem 16:547–557Google Scholar
  17. Honda K, Nishii W, Hayashi N (1997) Oviposition stimulants for sulfur butterfly Colias erate poliographys: Cyanoglucosides as synergistis involved in host preference. J Chem Ecol 23:323–331CrossRefGoogle Scholar
  18. Honda K, Ômura H, Chachin M, Kawano S, Inoue TA (2011) Synergistic or antagonistic modulation of oviposition response of two swallowtail butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by its constitutive prenylated flavonoid, phellamurin. J Chem Ecol 37:575–581CrossRefPubMedGoogle Scholar
  19. Huang X, Renwick JAA, Sachdev-Gupta K (1993) Oviposition stimulants and deterrents regulating differential acceptance of Iberis amara by Pieris rapae and P. napi oleracea. J Chem Ecol 19:1645–1663CrossRefPubMedGoogle Scholar
  20. Jakoby WB, Ohmura E, Hayaishi O (1956) Enzymatic decarboxylation of oxalic acid. J Biol Chem 222:435–446PubMedGoogle Scholar
  21. Kadowaki E, Yoshida Y, Nitoda T, Baba N, Nakajima S (2003) (−)-Olivil and (+)-1-acetoxypinoresinol from the olive tree (Olea europaea Linne; Oleaceae) as feeding stimulants of the olive weevil (Dyscerus perforatus. Biosci Biotechnol Biochem 67:415–419CrossRefPubMedGoogle Scholar
  22. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458PubMedCentralCrossRefPubMedGoogle Scholar
  23. Knapp DR (1979) Handbook of analytical derivatization reactions. Wiley, New YorkGoogle Scholar
  24. Lewis AC, van Emden HF (1986) Assays for insect feeding. In: Miller JR, Miller TA (eds) Insect-plant interactions. Springer, New York, pp 95–119CrossRefGoogle Scholar
  25. Li J, Wakui R, Horie M, Nishimura Y, Nishiyama Y, Ikeno Y, Tebayashi S, Kim CS (2010) Feeding stimulant in Cinnamomum camphora for the common bluebottle, Graphium sarpedon nipponum (Lepidoptera: Papilionidae). Z Naturforsch C 65:571–576CrossRefPubMedGoogle Scholar
  26. Libert B, Franceschi VR (1987) Oxalate in crop plants. J Agric Food Chem 35:926–937CrossRefGoogle Scholar
  27. Lynn FJ (1972) Oxalate toxicosis. Clin Toxicol 5:231–243CrossRefGoogle Scholar
  28. Malcolm SB, Brower LP (1989) Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284–295CrossRefGoogle Scholar
  29. Matsuda K, Matsumoto Y (1975) Feeding stimulation of the organic acids characteristic to the Polygonaceous plants in four species of Chrysomelidae. Jpn J Appl Entomol Zool 19:281–284 (in Japanese) CrossRefGoogle Scholar
  30. McNair JB (1932) The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot 19:255–272CrossRefGoogle Scholar
  31. Murata T, Mori N, Nishida R (2011) Larval feeding stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus L. in Citrus unshiu leaves. J Chem Ecol 37:1099–1109CrossRefPubMedGoogle Scholar
  32. Nakayama T, Honda K, Omura H, Hayashi N (2003) Oviposition stimulants for the tropical swallowtail butterfly, Papilio polytes, feeding on a rutaceous plant, Toddalia asiatica. J Chem Ecol 29:1621–1634CrossRefPubMedGoogle Scholar
  33. Nishida R, Fukami H (1989a) Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J Chem Ecol 15:2549–2563CrossRefPubMedGoogle Scholar
  34. Nishida R, Fukami H (1989b) Oviposition stimulants of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous. J Chem Ecol 15:2565–2575CrossRefPubMedGoogle Scholar
  35. Nishida R, Ohsugi T, Fukami H (1987) Oviposition stimulants of a Citrus-feeding swallowtail butterfly, Papilio xuthus L. Experientia 43:342–344CrossRefGoogle Scholar
  36. Ono H, Nishida R, Kuwahara Y (2000) A dihydroxy-gamma-lactone as an oviposition stimulant for the swallowtail butterfly, Papilio bianor, from the rutaceous plant, Orixa japonica. Biosci Biotechnol Biochem 64:1970–1973CrossRefPubMedGoogle Scholar
  37. Provenza FD (1995) Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J Range Manag 48:2–17CrossRefGoogle Scholar
  38. Ranson SL (1965) The plant acids. In: Bonner J, Varner JE (eds) Plant biochemistry, 2nd edn. Academic Press, New York, pp 493–525CrossRefGoogle Scholar
  39. Reig R, Sanz P, Blanche C, Fontarnau R, Dominguez A, Corbella J (1990) Fatal poisoning by Rumex crispus (curled dock): pathological findings and application of scanning electron microscopy. Vet Hum Toxicol 32:468–470PubMedGoogle Scholar
  40. Renner K (1970) Die Zucht von Gastroidea viridula Deg. (Col., Chrysomelidae) auf Blättern und Blattpulversubstraten von Rumex obtusifolius L. Z Angew Entomol 65:131–146CrossRefGoogle Scholar
  41. Renwick JAA, Lopez K (1999) Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomol Exp Appl 91:51–58CrossRefGoogle Scholar
  42. Renwick JAA, Radke CD (1983) Chemical recognition of host plants for oviposition by the cabbage butterfly, Pieris rapae (Lepidoptera: Pieridae). Environ Entomol 12:446–450CrossRefGoogle Scholar
  43. Robbins RK (1988) Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications. Proc Entomol Soc Wash 90:133–154Google Scholar
  44. Rosenthal GA, Berenbaum MR (1991) Herbivores, their interactions with secondary plant metabolites. Chemical Participants, vol I, 2nd edn. Academic Press, San DiegoGoogle Scholar
  45. Rothschild M, Nash RJ, Bell EA (1986) Cycasin in the endangered butterfly Eumaeus atala florida. Phytochemistry 25:1853–1854CrossRefGoogle Scholar
  46. Sahin N (2003) Oxalotrophic bacteria. Res Microbiol 154:399–407CrossRefPubMedGoogle Scholar
  47. Sahin N (2005) Isolation and characterization of a diazotrophic, oxalate-oxidizing bacterium from sour grass (Oxalis pes-caprae L.). Res Microbiol 156:452–456CrossRefPubMedGoogle Scholar
  48. Seddon HR, Ross IC (1929) Observations on the treatment of parasitic gastritis in sheep. Aust Vet J 5:69–71CrossRefGoogle Scholar
  49. Shields O (1989) World numbers of butterflies. J Lepid Soc 43:178–183Google Scholar
  50. Shimizu T (1982) Oxalidaceae. In: Satake Y, Ohwi J, Kitamura S, Watari S (eds) Wild flowers of Japan. Herbaceous plants (including Dwarf Subshrubs). Heibonsha Ltd., Tokyo, pp 215–216 (in Japanese) Google Scholar
  51. Shirouzu T (2006) Lycaenidae. In: Yata O, Yago M, Uemura Y, Odagir K, Tsukiyama H, Chiba H, Fukuda H, Tashita M (eds) The standard of butterflies in Japan Gakken, Tokyo, p 162 (in Japanese) Google Scholar
  52. Vaneker K (2015) Oxalic acid and oxalates. In: Albala K (ed) The SAGE encyclopedia of food issues. SAGE Publications Inc, California, pp 1097–1099Google Scholar
  53. Vernot EH, MacEwen JD, Haun CC, Kinkead ER (1977) Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions. Toxicol Appl Pharmacol 42:417–423CrossRefPubMedGoogle Scholar
  54. Verschaffelt E (1910) The cause determining the selection of food in some herbivorous insect. Proc Acad Sci Amst 13:536–542Google Scholar
  55. Yamamoto RT, Fraenkel G (1960) Assay of the principal gustatory stimulant for the Tobacco hornworm, Protoparce sexta, from solanaceous plants. Ann Ent Soc Am 53:499–503CrossRefGoogle Scholar
  56. Yoshida M, Cowgill SE, Wightman JA (1995) Mechanism of resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea: role of oxalic acid in leaf exudate as an antibiotic factor. J Econ Entomol 88:1783–1786CrossRefGoogle Scholar
  57. Yoshihara T, Sogawa K, Pathak MD, Julano BO, Sakamura S (1980) Oxalic acid as a sucking inhibitor of the brown planthopper in rice (Delphacidae, Homoptera). Entomol Exp Appl 27:149–155CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2015

Authors and Affiliations

  • Mei Yamaguchi
    • 1
    • 2
  • Shigeru Matsuyama
    • 1
    Email author
  • Keiko Yamaji
    • 1
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Japan Society for the Promotion of ScienceTokyoJapan

Personalised recommendations