Skip to main content
Log in

Tomato treatment with chemical inducers reduces the performance of Spodoptera littoralis (Lepidoptera: Noctuidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

The evolving understanding of plant signaling pathways has promoted the possibility of using chemical inducers as an effective tactic for crop protection. In this study, under greenhouse conditions, we conducted a growth assay of Spodoptera littoralis (Boisduval) larvae on tomato plants treated with BTH (S-methyl benzo [1, 2, 3] thiadiazole 7 carbothioate) as a salicylic acid mimic, PDJ (propyl [1RS, 2RS]-[3-oxo-2-pentylcyclopentyl] acetate) as a jasmonic acid-mimic or both chemicals as a combined treatment. The larval body weight of S. littoralis was drastically reduced with each chemical compared to control plants, and there was a significant synergistic interaction. Overall, the total weight gain of surviving larvae fed on treated plants was distinctly tenfold less than for those fed on control plants. Moreover, incorporating the chemical inducers in artificial diets had no direct or toxic impact on the larval body weight of S. littoralis under laboratory conditions. Larval survival rates were significantly lower (35–40 %) on treated plants with either combined or independent inducers’ treatments compared with control plants after 15-day feeding. In contrast, incorporating the chemical inducers in artificial diets had no direct effect on larval survival rates under laboratory conditions. The applied concentrations of BTH and PDJ had no detectable phytotoxicity to tomato plants. Our results demonstrate that BTH and PDJ can act synergistically when applied to tomato to reduce the performance of S. littoralis. These findings stress that the application of chemical inducers could provide an environment-friendly tactic to help manage insect pests and thereby play multiple roles in improving the overall plant resistance to herbivore pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boughton AJ, Hoover K, Felton GW (2006) Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomol Exp Appl 120:175–188

    Article  CAS  Google Scholar 

  • Bruce TJA (2010) Tackling the threat to food security caused by crop pests in the new millennium. Food Secur 2:133–141. doi:10.1007/s12571-010-0061-8

    Article  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects-finding the right mix. Phytochemistry 72:1605–1611. doi:10.1016/j.phytochem.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Martin JL, Pickett JA, Pye BJ, Smart LE, Wadhams LJ (2003) cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Manag Sci 59:1031–1036. doi:10.1002/ps.730

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Zhang M, Zhao H, Zhang Y, Wang X, Guo S (2014) Deciphering the mechanism of β-aminobutyric acid-induced resistance in wheat to the grain aphid, Sitobion avenae. PLoS One 9:e91768. doi:10.1371/journal.pone.0091768

    Article  PubMed Central  PubMed  Google Scholar 

  • Choh Y, Ozawa R, Takabayashi J (2004) Effects of exogenous Jasmonic acid and benzo (1, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a functional analogue of salicylic acid, on the egg production of a herbivorous mite Tetranychus urticae (Acari : Tetranychidae). Appl Entomol Zool 39:311–314

    Article  CAS  Google Scholar 

  • Cooper WC, Jia L, Goggin FL (2004) Acquired and R-gene-mediated resistance against the potato aphid in tomato. J Chem Ecol 30:2527–2542

    Article  CAS  PubMed  Google Scholar 

  • El-Defrawi ME, Toppozada A, Mansour N, Zeid M (1964) Toxicological studies on the Egyptian cotton leafworm, Prodenia litura. I. Susceptibility of different larval instars of Prodenia to insectcides. J Econ Entomol 57:591–593

    Article  CAS  Google Scholar 

  • Erb M, Balmer D, De Lange ES, von Mérey G, Planchamp C, Robert CAM, Röder G, Sobhy I, Zwahlen C, Mauch-Mani B, Turlings TCJ (2011) Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. Plant, Cell Environ 34:1088–1103. doi:10.1111/j.1365-3040.2011.02307.x

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383

    Article  CAS  PubMed  Google Scholar 

  • Gozzo F, Faoro F (2013) Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J Agric Food Chem 61:12473–12491. doi:10.1021/jf404156x

    Article  CAS  PubMed  Google Scholar 

  • Hegde M, Oliveira JN, da Costa JG, Loza-Reyes E, Bleicher E, Santana AEG, Caulfield JC, Mayon P, Dewhirst SY, Bruce TJA, Pickett JA, Birkett MA (2012) Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone. Phytochemistry 78:81–88. doi:10.1016/j.phytochem.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Thompson GA, Powell G (2005) Application of dl-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Bull Entomol Res 95:449–455. doi:10.1079/BER2005375

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Pope TW, Holaschke M, Powell G (2006) The effect of beta-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Ann Appl Biol 148:223–229. doi:10.1111/j.1744-7348.2006.00061.x

    Article  CAS  Google Scholar 

  • Inbar M, Doostdar H, Gerling D, Mayer RT (2001) Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects. Entomol Exp Appl 99:65–70

    Article  CAS  Google Scholar 

  • Koshiyama M, Watanabe K, Fujisawa H, Mitomi M, Imamura K (2006) Development of a new plant growth regulator, prohydrojasmon. Regul Plant Growth Dev 41:24–33

    CAS  Google Scholar 

  • Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th edn. McGraw-Hill/Irwin, New York

    Google Scholar 

  • Leadbeater A, Staub T (2007) Exploitation of induced resistance: a commercial perspective. In: Walters D, Newton A, Lyon G (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell Publishing Ltd, Oxford, pp 229–241

    Chapter  Google Scholar 

  • Maeda T, Ishiwari H (2012) Tiadinil, a plant activator of systemic acquired resistance, boosts the production of herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi in the tea plant Camellia sinensis. Exp Appl Acarol 58:247–258. doi:10.1007/s10493-012-9577-2

    Article  CAS  PubMed  Google Scholar 

  • Mandour NS, Kainoh Y, Ozawa R, Uefune M, Takabayashi J (2013) Effects of prohydrojasmon-treated corn plants on attractiveness to parasitoids and the performance of their hosts. J Appl Entomol 137:104–112. doi:10.1111/j.1439-0418.2012.01721.x

    Article  CAS  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. doi:10.1146/annurev-arplant-042110-103854

    Article  PubMed  Google Scholar 

  • Moraes MCB, Birkett MA, Gordon-Weeks R, Smart LE, Martin JL, Pye BJ, Bromilow R, Pickett JA (2008) cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69:9–17. doi:10.1016/j.phytochem.2007.06.020

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262. doi:10.1104/pp.105.072348.was

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pickett JA, Aradottír GI, Birkett MA, Bruce TJA, Hooper AM, Midega CAO, Jones HD, Matthes MC, Napier JA, Pittchar JO, Smart LE, Woodcock CM, Khan ZR (2014) Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. Philos Trans R Soc Lond B Biol Sci. doi:10.1098/rstb.2012.0281

    Google Scholar 

  • Plymale RC, Felton G, Hoover K (2007) Induction of systemic acquired resistance in cotton foliage does not adversely affect the performance of an entomopathogen. J Chem Ecol 33:1570–1581. doi:10.1007/s10886-007-9329-7

    Article  CAS  PubMed  Google Scholar 

  • Sadek MM, Hansson BS, Anderson P (2010) Does risk of egg parasitism affect choice of oviposition sites by a moth? A field and laboratory study. Basic Appl Ecol 11:135–143. doi:10.1016/j.baae.2009.09.003

    Article  Google Scholar 

  • Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368. doi:10.1104/pp.104.058206.et

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schweiger R, Heise A-M, Persicke M, Müller C (2014) Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant, Cell Environ 37:1574–1585. doi:10.1111/pce.12257

    Article  CAS  Google Scholar 

  • Shorey HH, Hale RL (1965) Mass-rearing of the larvae of nine Noctuid species on a simple artificial medium. J Econ Entomol 58:522–524

    Article  Google Scholar 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497–503. doi:10.1002/ps.1714

    Article  CAS  PubMed  Google Scholar 

  • Sobhy IS, Erb M, Sarhan AA, El-Husseini MM, Mandour NS, Turlings TCJ (2012) Less is more: treatment with BTH and Laminarin reduces herbivore-induced volatile emissions in maize but increases parasitoid attraction. J Chem Ecol 38:348–360. doi:10.1007/s10886-012-0098-6

    Article  CAS  PubMed  Google Scholar 

  • Sobhy IS, Erb M, Lou Y, Turlings TCJ (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos Trans R Soc Lond B Biol Sci 369:20120283. doi:10.1098/rstb.2012.0283

    Article  PubMed Central  PubMed  Google Scholar 

  • Sobhy IS, Erb M, Turlings TCJ (2015) Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles. Pest Manag Sci. doi:10.1002/ps.3821

    PubMed  Google Scholar 

  • Stout MJ, Workman KV, Bostock RM, Duffey SS (1998) Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81

    Article  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Meyer WL, Stelinski LL (2013) Induced resistance against the Asian citrus psyllid, Diaphorina citri, by β-aminobutyric acid in citrus. Bull Entomol Res 103:592–600. doi:10.1017/S0007485313000229

    Article  CAS  PubMed  Google Scholar 

  • Uefune M, Ozawa R, Takabayashi J (2013) Prohydrojasmon treatment of lima bean plants reduces the performance of two-spotted spider mites and induces volatiles. J Plant Interact. doi:10.1080/17429145.2012.763146

    Google Scholar 

  • Von Mérey GE, Veyrat N, D’Alessandro MD, Turlings TCJ (2013) Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Front Plant Sci 4:1–9. doi:10.3389/fpls.2013.00209

    Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280. doi:10.1093/jxb/ert026

    Article  CAS  PubMed  Google Scholar 

  • Yoneya K, Kugimiya S, Takabayashi J (2014) Leaf beetle larvae, Plagiodera versicolora (Coleoptera: Chrysomelidae), show decreased performance on uninfested host plants exposed to airborne factors from plants infested by conspecific larvae. Appl Entomol Zool. doi:10.1007/s13355-013-0243-x

    Google Scholar 

  • Yoshida K, Ogino A, Yamada K, Sonoda R (2010) Induction of disease resistance in Tea (Camellia sinensis L.) by plant activators. Japan Agric Res Q JARQ 44:391–398. doi:10.6090/jarq.44.391

    Article  Google Scholar 

  • Zhong Y, Wang B, Yan J, Cheng L, Yao L, Xiao L, Wu T (2014) dl-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). PLoS ONE 9:e85142. doi:10.1371/journal.pone.0085142

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the useful comments and constructive remarks of Prof. Stuart Reitz (Oregon State University, USA) on the manuscript. We greatly thank Mohammed Abdel El-Hady and the graduate students (level 4) of the 2011–2012 academic year at the Department of Plant Protection, notably, Sara Mousa and Seham Mohammed, for their assistance in the experimental setup. This work was supported by the Public Service Center for Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam S. Sobhy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhy, I.S., Mandour, N.S. & Sarhan, A.A. Tomato treatment with chemical inducers reduces the performance of Spodoptera littoralis (Lepidoptera: Noctuidae). Appl Entomol Zool 50, 175–182 (2015). https://doi.org/10.1007/s13355-014-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-014-0319-2

Keywords

Navigation