Skip to main content
Log in

DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Conogethes punctiferalis (Guénee) is a critical pest that commonly infests castor (Ricinus communis Linnaeus) and cardamom (Elettaria cardamomum Maton) in India. The moths of both castor and cardamom appear to be similar in wing pattern and color. However, the results of behavioral studies elicited a doubt that there may be differences in terms of host specialization. In the present study, we conducted morphological studies and DNA barcode analyses using cytochrome oxidase I gene, which unraveled the mystery of C. punctiferalis breeding on castor and cardamom. The differences in male aedeagus and female bursae were prominent, yet, not sufficient enough to say that they are different species. The results showed high haplotype diversity (0.817 ± 0.073) and nucleotide diversity (0.0285 ± 0.002) in C. punctiferalis. In addition, topologies of neighbor-joining trees indicate that Conogethes sp. breeding on castor belongs to C. punctiferalis while those on cardamom are of a separate clade. Further genetic analysis revealed significant genetic differentiations among the two sampled populations, reflecting limited gene flow. Neutrality tests and mismatch distributions showed population expansion in C. punctiferalis, while the results of an analysis of molecular variance (AMOVA) indicated the existence of significant genetic variation among the examined host races. Conclusively, analysis using mitochondrial DNA showed an amount of genetic divergence between the two host-associated populations compatible with cryptic species rather than host races.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–441

    Article  PubMed  CAS  Google Scholar 

  • Armstrong K (2010) DNA barcoding: a new module in New Zealand’s plant biosecurity diagnostic toolbox. Bull OEPP/EPPO 40:91–100

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Brower AW (1999) Delimitation of phylogenetic species with DNA sequences: a critique of Davis and Nixon’s population aggregation analysis. Evol 48:199–213

    CAS  Google Scholar 

  • Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evol 23:237–251

    Article  Google Scholar 

  • Caterino MS, Sperling FAH (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogenet Evol 11:122–137

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy AK, Honda H, Thyagaraj NE (1991) Comparison of containers for larval rearing in stalk and fruit feeding type of Conogethes punctiferalis (Guen.) (Lepidoptera: Pyralidae). Placrosym 9:127–131

    Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnacalis. Int J Biol Sci 1:13–18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci 357:471–492

    Article  PubMed Central  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arliquin suite ver 3.5: a new series of programs to perform population genetics analysis under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fu Y, Li W (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103:968–971

    Article  PubMed Central  PubMed  Google Scholar 

  • Hampson GF (1896) The Fauna of British India including Ceylon and Burma (Moths). Taylor and Francis, London, p 594

    Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 101:14812–14817

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huemer P, Hebert PDN (2011) Cryptic diversity and phylogeography of high alpine Sattleria: a case study combining DNA barcodes and morphology (Lepidoptera: Gelechiidae). Zootaxa 2981:1–22

    Google Scholar 

  • Inoue H, Yamanaka H (2006) Redescription of Conogethes punctiferalis (Guenée) and description of two new closely allied species from Eastern Palaearctic and Oriental regions (Pyralidae, Pyraustinae). Tinea 19:80–91

    Google Scholar 

  • Jackson JK, Resh VH (1998) Morphologically cryptic species confound ecological studies of the caddisfly genus Gumaga (Trichoptera: Sericostomatidae) in Northern California. Aquat Insects 20:69–84

    Article  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with ClustalX[J]. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  • Kapadia MN (1996) Estimation of loses due to pod borer in oil seed crops. J Oil Seeds Res 13:139–140

    Google Scholar 

  • Kim CG, Hoshizaki S, Huang YP, Tatsuki S (1999) Usefulness of mitochondrial COII gene sequences in examining phylogenetic relationships in the Asian corn borer, Ostrinia furnacalis, and allied species (Lepidoptera: Pyralidae). Appl Entomol Zool 34:405–412

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Klots AB (1965) Lepidoptera. In: Tuxen SL (ed) Taxonomic glossary of genitalia in insects. Jhar munrsgard, Copenhagen, pp 97–111

    Google Scholar 

  • Koizumi K (1960) Two forms of Dichocrocis punctiferalis (Guenee) presumably representing separate species. In: The main purport of a lecture the 20th annual meeting of the Entomological Society of Japan 8–9

  • Kruse JJ, Sperling FAH (2001) Molecular phylogeny within and between species of the Archips argyrospila complex (Lepidoptera: Tortricidae). Ann Entomol Soc Am 94:166–173

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinform 25:1451–1452

    Article  CAS  Google Scholar 

  • Logan JA (1999) Extraction, polymerase chain reaction, and sequencing of a 440 base pair region of the mitochondrial cytochrome oxidase I gene from two species of acetone-preserved DamselXies (Odonata: Coenagrionidae, Agrionidae). Environ Entomol 28:143–147

    CAS  Google Scholar 

  • Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL, Baoua I, Ishiyaku MF, Shukle JT, Hellmich RL, Covas FG, Ramasamy S, Armstrong J, Pittendrigh BR, Murdock LL (2011) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol Biol Rep 38:893–903

    Article  PubMed  CAS  Google Scholar 

  • Nagoshi RN, Brambila J, Meagher RL (2011) Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J Insect Sci 11:1–11

    Article  Google Scholar 

  • Nieukerken EJ, Camiel D, Frank RS, Dick SJG (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species. Contri Zool 81:1–24

    Google Scholar 

  • Ohno S, Ishikawa Y, Tatsuki S, Hoshizaki S (2006) Variation in mitochondrial COII gene sequences among two species of Japanese knotweed-boring moths, Ostrinia latipennis and O. ovalipennis (Lepidoptera: Crambidae). Bull Entomol Res 96:243–249

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim EM, Roush SA, Krane DE (2002) Combining DNA sequences and morphology in systematics: testing the validity of the dragonfly species Cordulegaster bilineata. Heredity 89:184–190

    Article  PubMed  CAS  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system. Mol Ecol Not 7:355–364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1805–1811

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sekiguchi K (1974) Morphology, biology and control of the yellow peach moth, Dichocrosis punctiferalis Guenée (Lepidoptera: Pyralidae). Bull Ibaraki Hort Exp Stat (Special Issue) 89 pp (in Japanese with English summary)

  • Sperling F, Hickey D (1995) Amplified mitochondrial DNA as a diagnostic markers for species of conifer-feeding Choristoneura (Lepidoptera: Tortricidae). Can Entomol 127:277–288

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trewick SA (2000) Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. J Biogeogr 27:1189–1200

    Article  Google Scholar 

  • Vaglia T, Jean H, Kitching IJ, Meusnier I, Rougerie R (2008) Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera: Sphingidae). Zootaxa 1923:18–36

    Google Scholar 

  • Wilson JJ, Landry JF, Janzen DH, Hallwachs W, Nazari V, Hajibabaei M, Hebert PDN (2010) Identity of the ailanthus webworm moth (Lepidoptera: Yponomeutidae), a complex of two species: evidence from DNA barcoding, morphology and ecology. ZooKeys 46:41–60

    Google Scholar 

  • Yuan ML, Wei DD, Zhang K, Gao YZ, Liu YH, Wang BJ, Wang JJ (2010) Genetic diversity and population structure of Panonychus citri (Acari: Tetranychidae), in China based on mitochondrial COI gene sequences. J Econ Entomol 103:2204–2213

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Uday Kumar and Dr. M.S. Sheshshayee, Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India for providing laboratory facilities to conduct this work, and the valuable comments by Dr. Hiroshi Honda, Graduate School of life and Environmental Sciences, Tsukuba, Japan. We profoundly thank Dr. C. A. Viraktamath, for facilitating and guiding in morphological work; Mr. H. M. Yeshwanth, for helping in photography of moths; Dr. N.E. Thygaraj and Mr. M.V. Nataraj, Department of Entomology, University of Agricultural Sciences, Bangalore, India, who helped in the collection of samples. This work was supported by the Department of Science and Technology (DST), New Delhi, by awarding the INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Shashank.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashank, P.R., Chakravarthy, A.K., Raju, B.R. et al. DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae). Appl Entomol Zool 49, 283–295 (2014). https://doi.org/10.1007/s13355-014-0248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-014-0248-0

Keywords

Navigation