Abstract
Conogethes punctiferalis (Guénee) is a critical pest that commonly infests castor (Ricinus communis Linnaeus) and cardamom (Elettaria cardamomum Maton) in India. The moths of both castor and cardamom appear to be similar in wing pattern and color. However, the results of behavioral studies elicited a doubt that there may be differences in terms of host specialization. In the present study, we conducted morphological studies and DNA barcode analyses using cytochrome oxidase I gene, which unraveled the mystery of C. punctiferalis breeding on castor and cardamom. The differences in male aedeagus and female bursae were prominent, yet, not sufficient enough to say that they are different species. The results showed high haplotype diversity (0.817 ± 0.073) and nucleotide diversity (0.0285 ± 0.002) in C. punctiferalis. In addition, topologies of neighbor-joining trees indicate that Conogethes sp. breeding on castor belongs to C. punctiferalis while those on cardamom are of a separate clade. Further genetic analysis revealed significant genetic differentiations among the two sampled populations, reflecting limited gene flow. Neutrality tests and mismatch distributions showed population expansion in C. punctiferalis, while the results of an analysis of molecular variance (AMOVA) indicated the existence of significant genetic variation among the examined host races. Conclusively, analysis using mitochondrial DNA showed an amount of genetic divergence between the two host-associated populations compatible with cryptic species rather than host races.
Similar content being viewed by others
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–441
Armstrong K (2010) DNA barcoding: a new module in New Zealand’s plant biosecurity diagnostic toolbox. Bull OEPP/EPPO 40:91–100
Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155
Brower AW (1999) Delimitation of phylogenetic species with DNA sequences: a critique of Davis and Nixon’s population aggregation analysis. Evol 48:199–213
Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evol 23:237–251
Caterino MS, Sperling FAH (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogenet Evol 11:122–137
Chakravarthy AK, Honda H, Thyagaraj NE (1991) Comparison of containers for larval rearing in stalk and fruit feeding type of Conogethes punctiferalis (Guen.) (Lepidoptera: Pyralidae). Placrosym 9:127–131
Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnacalis. Int J Biol Sci 1:13–18
Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci 357:471–492
Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185
Excoffier L, Lischer HEL (2010) Arliquin suite ver 3.5: a new series of programs to perform population genetics analysis under Linux and Windows. Mol Ecol Res 10:564–567
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299
Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925
Fu Y, Li W (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709
Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103:968–971
Hampson GF (1896) The Fauna of British India including Ceylon and Burma (Moths). Taylor and Francis, London, p 594
Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 101:14812–14817
Huemer P, Hebert PDN (2011) Cryptic diversity and phylogeography of high alpine Sattleria: a case study combining DNA barcodes and morphology (Lepidoptera: Gelechiidae). Zootaxa 2981:1–22
Inoue H, Yamanaka H (2006) Redescription of Conogethes punctiferalis (Guenée) and description of two new closely allied species from Eastern Palaearctic and Oriental regions (Pyralidae, Pyraustinae). Tinea 19:80–91
Jackson JK, Resh VH (1998) Morphologically cryptic species confound ecological studies of the caddisfly genus Gumaga (Trichoptera: Sericostomatidae) in Northern California. Aquat Insects 20:69–84
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with ClustalX[J]. Trends Biochem Sci 23:403–405
Kapadia MN (1996) Estimation of loses due to pod borer in oil seed crops. J Oil Seeds Res 13:139–140
Kim CG, Hoshizaki S, Huang YP, Tatsuki S (1999) Usefulness of mitochondrial COII gene sequences in examining phylogenetic relationships in the Asian corn borer, Ostrinia furnacalis, and allied species (Lepidoptera: Pyralidae). Appl Entomol Zool 34:405–412
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
Klots AB (1965) Lepidoptera. In: Tuxen SL (ed) Taxonomic glossary of genitalia in insects. Jhar munrsgard, Copenhagen, pp 97–111
Koizumi K (1960) Two forms of Dichocrocis punctiferalis (Guenee) presumably representing separate species. In: The main purport of a lecture the 20th annual meeting of the Entomological Society of Japan 8–9
Kruse JJ, Sperling FAH (2001) Molecular phylogeny within and between species of the Archips argyrospila complex (Lepidoptera: Tortricidae). Ann Entomol Soc Am 94:166–173
Librado P, Rozas J (2009) DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinform 25:1451–1452
Logan JA (1999) Extraction, polymerase chain reaction, and sequencing of a 440 base pair region of the mitochondrial cytochrome oxidase I gene from two species of acetone-preserved DamselXies (Odonata: Coenagrionidae, Agrionidae). Environ Entomol 28:143–147
Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL, Baoua I, Ishiyaku MF, Shukle JT, Hellmich RL, Covas FG, Ramasamy S, Armstrong J, Pittendrigh BR, Murdock LL (2011) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol Biol Rep 38:893–903
Nagoshi RN, Brambila J, Meagher RL (2011) Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J Insect Sci 11:1–11
Nieukerken EJ, Camiel D, Frank RS, Dick SJG (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species. Contri Zool 81:1–24
Ohno S, Ishikawa Y, Tatsuki S, Hoshizaki S (2006) Variation in mitochondrial COII gene sequences among two species of Japanese knotweed-boring moths, Ostrinia latipennis and O. ovalipennis (Lepidoptera: Crambidae). Bull Entomol Res 96:243–249
Pilgrim EM, Roush SA, Krane DE (2002) Combining DNA sequences and morphology in systematics: testing the validity of the dragonfly species Cordulegaster bilineata. Heredity 89:184–190
Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system. Mol Ecol Not 7:355–364
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1805–1811
Sekiguchi K (1974) Morphology, biology and control of the yellow peach moth, Dichocrosis punctiferalis Guenée (Lepidoptera: Pyralidae). Bull Ibaraki Hort Exp Stat (Special Issue) 89 pp (in Japanese with English summary)
Sperling F, Hickey D (1995) Amplified mitochondrial DNA as a diagnostic markers for species of conifer-feeding Choristoneura (Lepidoptera: Tortricidae). Can Entomol 127:277–288
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
Trewick SA (2000) Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. J Biogeogr 27:1189–1200
Vaglia T, Jean H, Kitching IJ, Meusnier I, Rougerie R (2008) Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera: Sphingidae). Zootaxa 1923:18–36
Wilson JJ, Landry JF, Janzen DH, Hallwachs W, Nazari V, Hajibabaei M, Hebert PDN (2010) Identity of the ailanthus webworm moth (Lepidoptera: Yponomeutidae), a complex of two species: evidence from DNA barcoding, morphology and ecology. ZooKeys 46:41–60
Yuan ML, Wei DD, Zhang K, Gao YZ, Liu YH, Wang BJ, Wang JJ (2010) Genetic diversity and population structure of Panonychus citri (Acari: Tetranychidae), in China based on mitochondrial COI gene sequences. J Econ Entomol 103:2204–2213
Acknowledgments
We thank Dr. Uday Kumar and Dr. M.S. Sheshshayee, Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India for providing laboratory facilities to conduct this work, and the valuable comments by Dr. Hiroshi Honda, Graduate School of life and Environmental Sciences, Tsukuba, Japan. We profoundly thank Dr. C. A. Viraktamath, for facilitating and guiding in morphological work; Mr. H. M. Yeshwanth, for helping in photography of moths; Dr. N.E. Thygaraj and Mr. M.V. Nataraj, Department of Entomology, University of Agricultural Sciences, Bangalore, India, who helped in the collection of samples. This work was supported by the Department of Science and Technology (DST), New Delhi, by awarding the INSPIRE fellowship.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Shashank, P.R., Chakravarthy, A.K., Raju, B.R. et al. DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae). Appl Entomol Zool 49, 283–295 (2014). https://doi.org/10.1007/s13355-014-0248-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13355-014-0248-0