Skip to main content
Log in

A novel point mutation of acetylcholinesterase in a trichlorfon-resistant strain of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) is the target enzyme of organophosphorus and carbamate insecticides. We applied trichlorfon to select resistant strains of Bactrocera dorsalis Hendel in the laboratory. Two trichlorfon-resistant strains, the Tri-R1 strain with 18.23-fold resistance and the Tri-R2 strain with 69.5-fold resistance, were obtained. Three known mutations, I159V, G433S and Q588R were identified in AChE of two resistant strains, and a novel mutation, G365A, was identified in the more resistant Tri-R2 strain. The modeled 3-D-structure of AChE showed that G365A and G433S are closely adjacent in the gorge above the catalytic site S235. Mutations of G365A and G433S resulted in a steric hindrance by stronger Van der Waals force between two sites. Such a minor structural change might block insecticides from squeezing through the gorge to reach the active site, but not the natural substrate. Compared with the susceptible strain, the AChE activity of the Tri-R1 strain and the Tri-R2 strain was 0.87- and 0.67-fold, the K m value of the Tri-R1 strain and the Tri-R2 strain was 0.11- and 0.10-fold, the V max value of two resistant strains was 0.26- and 0.15-fold, whereas, the I 50 to trichlorfon significantly increased by 9.07- and 13.19-fold. These results suggested that the novel point mutation G365A of AChE might be involved in increasing resistance to trichlorfon in the resistant strain of oriental fruit fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Baek JH, Kim JI, Lee DW et al (2005) Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochem Physiol 81:164–175

    Article  CAS  Google Scholar 

  • Berrada S, Fournier D (1997) Transposition-mediated transcriptional overexpression as a mechanism of insecticide resistance. Mol Gen Genet 256:348–354

    Article  CAS  PubMed  Google Scholar 

  • Bourguet D, Raymond M, Fournier D et al (1996) Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). J Neurochem 67:2115–2123

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bull DL (1992) Target site and enzyme changes associated with selection of subcolonies of a multiresistant house fly strain with methyl parathion or permethrin. Pesticide Biochem Physiol 42:211–226

    Article  CAS  Google Scholar 

  • Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17:983–998. doi:10.1021/tx0499259

    Article  CAS  PubMed  Google Scholar 

  • Charpentier A, Fournier D (2001) Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochem Physiol 70:100–107

    Article  CAS  Google Scholar 

  • Chovancová E, Pavelka A, Beneš P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708

    Article  PubMed Central  PubMed  Google Scholar 

  • DeLano WL (2002) The Pymol Molecular Graphic System. Version 099rc2, Delano Scientific, Palo Alto, CA

  • Devonshire AL, Moores GD (1984) Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pesticide Biochem Physiol 21:336–340

    Article  CAS  Google Scholar 

  • Ffrench-Constant RH, Rocheleau TA, Steichen JC et al (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant RH, Pittendrigh B, Vaughan A et al (1998) Why are there so few resistance-associated mutations insecticide target genes. Royal Soc 353:1685–1693

    CAS  Google Scholar 

  • Field LM, Devonshire AL, Forde BG (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J 251:309

    CAS  PubMed  Google Scholar 

  • Fournier D, Karch F, Bride JM et al (1989) Drosophila melanogaster acetylcholinesterase gene: structure, evolution and mutations. J Mol Biol 210:15–22

    Article  CAS  PubMed  Google Scholar 

  • Fournier D, Bride JM, Poirie M et al (1992a) Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J Biol Chem 267:1840–1845

    CAS  PubMed  Google Scholar 

  • Fournier D, Bride JM, Hoffmann F et al (1992b) Acetylcholinesterase. Two types of modifications confer resistance to insecticide. J Biol Chem 267:14270–14274

    CAS  PubMed  Google Scholar 

  • Gao JR, Zhu KY (2002) Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pesticide Biochem Physiol 73:164–173

    Article  CAS  Google Scholar 

  • Gorun V, Proinov I, Baltescu V et al (1978) Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations. Anal Biochem 86:324–326

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Hall L, Spierer P (1986) The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 50 leader. EMBO J 5:2949–2954

    CAS  PubMed  Google Scholar 

  • Harel M, Kryger G, Rosenberry TL et al (2000) Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci 9:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Hawkes NJ, Janes RW, Hemingway J et al (2005) Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pesticide Biochem Physiol 81:154–163

    Article  CAS  Google Scholar 

  • Hsu JC (2000) Insecticide susceptibility of the oriental fruit fly (Bactrocera dorsalis (Hendel)) (Diptera: Tephritidae) in Taiwan. Chinese J Entomol 20:109–118

    Google Scholar 

  • Hsu JC, Haymer DS, Wu WJ et al (2006) Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem Mol Biol 36:396–402

    Article  CAS  PubMed  Google Scholar 

  • Hsu JC, Wu WJ, Haymer DS et al (2008) Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochem Mol 38:146–154

    Article  CAS  Google Scholar 

  • Javed N, Viner R, Williamson M et al (2003) Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Insect Mol Biol 12:613–620

    Article  CAS  PubMed  Google Scholar 

  • Jia CS (2006) Calculating the LC50 of insecticides with software SPSS. Entomol Knowl 43:414–417

    CAS  Google Scholar 

  • Jin T, Zeng L, Lin YY et al (2011) Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in mainland China. Pest Manag Sci 67:370–376

    Article  CAS  PubMed  Google Scholar 

  • Kozaki T, Shono T, Tomita T et al (2001) Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Bio 31:991–997

    Article  CAS  Google Scholar 

  • Li F (2003) Molecular biological studies on neural targets of insecticides in cotton, aphid, Aphis gossypii (Glover). Dissertation, Nanjing Agricultural University

  • Li F, Han ZJ (2002) Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii). Genome 45:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Li F, Han ZJ (2004) Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem Mol Biol 34:397–405

    Article  CAS  PubMed  Google Scholar 

  • Malcolm CA, Bourguet D, Ascolillo A et al (1998) A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol 7:107–120

    Article  CAS  PubMed  Google Scholar 

  • Menozzi P, Shi MA, Lougarre A et al (2004) Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evol Biol 4:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Mouchès C, Pasteur N, Bergé JB et al (1986) Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science (New York, NY) 233:778

    Article  Google Scholar 

  • Mutero A, Pralavorio M, Bride JM et al (1994) Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci USA 91:5922–5926

    Article  CAS  PubMed  Google Scholar 

  • Ni XY, Tomita T, Kasai S et al (2003) cDNA and deduced protein sequence of acetylcholinesterase from the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Appl Entomol Zool 38:49–56

    Article  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N et al (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi MA, Lougarre A, Alies C et al (2004) Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evol Biol 4:5. doi:10.1186/1471-2148-4-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Vaughan A, Rocheleau T, Ffrench-Constant R (1997) Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Exp Parasitol 87:237–244

    Article  CAS  PubMed  Google Scholar 

  • Vontas JG, Hejazi MJ, Hawkes NJ et al (2002) Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol Biol 11:329–336

    Article  CAS  PubMed  Google Scholar 

  • Vontas J, Hernandez-Crespo P, Margaritopoulos JT et al (2011) Insecticide resistance in Tephritid flies. Pesticide Biochem Physiol 100:199–205. doi:10.1016/j.pestbp.2011.04.004

    Article  CAS  Google Scholar 

  • Walsh SB, Dolden TA, Moores GD et al (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359:175–181

    Article  CAS  PubMed  Google Scholar 

  • Weill M, Fort P, Berthomieu A et al (2002) A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc Roy Soc B Biol Sci 269:2007–2016

    Article  CAS  Google Scholar 

  • Weill M, Lutfalla G, Mogensen K et al (2003) Insecticide resistance in mosquito vectors. Nature 423:136–137

    Article  CAS  PubMed  Google Scholar 

  • WHO (1970) Insecticide resistance and vector control: seventeenth report of the WHO expert committee on insecticides. WHO Tech Rep 1970:433

  • Zhang YP (2007) Study on insecticides resistance of Bactrocera dorsalis (Hendel). Dissertation, South China Agricultural University

  • Zhang ZX, Xu HH, Cheng DY (2002) Calculating toxicity regression with EXCEL. Entomol Knowl 39:67–70

    CAS  Google Scholar 

  • Zhu KY, Lee SH, Clark JM (1996) A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochem Physiol 55:100–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Project of National Public Service in Agriculture (200903047). We appreciate two anonymous reviewers’ crucial suggestions and detailed comments for improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Zeng or Shuo-yang Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Jj., Zhou, K., Liang, Gw. et al. A novel point mutation of acetylcholinesterase in a trichlorfon-resistant strain of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). Appl Entomol Zool 49, 129–137 (2014). https://doi.org/10.1007/s13355-013-0232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-013-0232-0

Keywords

Navigation