Skip to main content
Log in

Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek)

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Lectins are a diverse group of proteins found throughout plant species. Numerous lectins are involved in many important processes such as organogenesis, defense mechanism, signaling, and stress response. Although the mungbean whole genome sequence has been published, distribution, diversification, and gene structure of lectin genes in mungbean are still unknown. A total of 73 putative lectin genes with kinase domain have been identified through BLAST and HMM profiling. Furthermore, these sequences could be classified into three families, such as G-type, L-type, and C-type VrLecRLKs. 59 out of 73 VrLecRLKs were distributed on to 11 chromosomes, whereas rest could not be anchored onto any specific chromosome. Gene structure analysis revealed a varying number of exons in 73 VrLecRLK genes. Gene ontology annotations were grouped into three categories like biological processes, cellular components and molecular functions, which were associated with signaling pathways, defense responses, transferase activity, binding activity, and kinase activity. The comprehensive and systematic studies of LecRLK genes family provides a reference and foundation for further functional analysis of VrLecRLK genes in mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LS (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    CAS  PubMed  Google Scholar 

  • Allito BB, Nana EM, Alemneh AA (2015) Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Mol Soil Biol 2:1–6. https://doi.org/10.5376/msb.2015.06.0002

    Article  Google Scholar 

  • Bonaventure G (2011) The Nicotiana attenuata Lectin receptor kinase 1 is involved in the perception of insect feeding. Plant Signal Behav 6:1–4

    Article  Google Scholar 

  • Bouwmeester K, De Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F (2011) The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog 7:e1001327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7:481–488

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. International J Plant Genomics 619832:12. https://doi.org/10.1155/2008/619832

    Article  CAS  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuate LECTIN RECEPTOR KINASE 1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell 23:3512–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Bio 52:696–704

    Article  Google Scholar 

  • Herve C, Dabos P, Galaud JP, Rouge P, Lescure B (1996) Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J Mol Biol 258:778–788

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Huang P, Ju HW, Min JH, Zhang X, Kim SH, Yang KY, Kim CS (2013) Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 203:98–106

    Article  PubMed  Google Scholar 

  • Huang PY, Yeh YH, Liu AC, Cheng CP, Zimmerli L (2014) The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J 79:243–255

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Dang HQ, Vaid N, Tuteja N (2010) Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 27:133–150

    Article  CAS  PubMed  Google Scholar 

  • Kang JY, Kim SK, Kim MY, Lestari P, Kim KH, Ha B-K, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag J-G, Moon J-K, Ho-Lee Y, Park B, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinive P, Varshney RK, Lee S (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK, Lestari P, Laosatit K, Kim KH, Ha TJ (2015) Draft genome sequence of adzukibean, Vigna angularis. Sci Rep 5(1):1–8

    Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228(6):977–987

    Article  CAS  PubMed  Google Scholar 

  • Kaul T, Eswaran M, Thangaraj A, Meyyazhagan A, Nehra M, Raman NM, Bharti J, Gayacharan, Badapanda C, Balamurali B (2019) Rice Bean (Vigna umbellata) draft genome sequence: unravelling the late flowering and unpalatability related genomic resources for efficient domestication of this underutilized crop. BioRxiv 816595. https://doi.org/10.1101/816595

  • Kim HS, Jung MS, Lee SM, Kim KE, Byun H, Choi MS, Park HC, Cho MJ, Chung WS (2009) An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem Biophys Res Commun 381(3):424–428

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME (2001) Self-incompatibility in the genus Arabidopsis: characterization of the S-locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13:627–643. https://doi.org/10.1105/tpc.13.3.627

  • Lannoo N, Peumans WJ, Van Damme EJ (2008) Do F-box proteins with a C-terminal domain homologous with the tobacco lectin play a role in protein degradation in plants? Biochem Soc Trans 36:843–847

    Article  CAS  PubMed  Google Scholar 

  • Lannoo N, Van Damme EJ (2014) Lectin domains at the frontiers of plant defense. Front Plant Sci 5:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu et al. (2017) Liu S, Wang J, Chen K, Zhang Z, Zhang P. the L-type lectin receptor-like kinase (PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis. Plant Growth Reg 81(3):409–418

  • Liu PL, Huang Y, Shi PH, Yu M, Xie JB, Xie L (2018) Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean. Sci Rep 8(1):5861

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonardi S, Munoz-Amatria M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo MC, Alhakami H, Ounit R, Hasan AM, Verdier J, Roberts PA, Santos JRP, Ndeve A, Dolezel J, Vrana J, Hokin SA, Farmer AD, Cannon SB, Close TJ (2019) The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant J 98:767–782

    Article  CAS  PubMed  Google Scholar 

  • Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572(2–3):198–208

    Article  CAS  PubMed  Google Scholar 

  • Lv D, Wang G, Xiong LR, Sun JX, Chen Y, Guo CL, Yu Y, He HL, Cai R, Pan J (2020) Genome-wide identification and characterization of lectin receptor-like kinase gene family in cucumber and expression profiling analysis under different treatments genes 11(9):1032

  • Ma N, Liu C, Li H, Wang J, Zhang B, Lin J, Chang Y (2018) Genome-wide identification of lectin receptor kinases in pear: functional characterization of the L-type LecRLK gene PbLRK138. Genes 661:11–21

    CAS  Google Scholar 

  • Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P (2020) Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant. https://doi.org/10.1111/ppl.13268

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125

    Article  CAS  PubMed  Google Scholar 

  • Morillo SA, Tax FE (2006) Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9:460–469

    Article  CAS  PubMed  Google Scholar 

  • Nair RM, Pandey AK, War AR, Hanumantharao B, Shwe T, Alam AKMM, Pratap A, Malik SR, Karimi R, Mbeyagala EK, Douglas CA, Rane J, Schafleitner R (2019) Biotic and abiotic constraints in mungbean production—progress in genetic improvement. Front Plant Sci 10:1340

    Article  PubMed  PubMed Central  Google Scholar 

  • Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci U S A 104(29):12211–12216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gochicoa MT, Camut S, Timmers AC, Niebel A, Hervé C, Boutet E, Bono JJ, Imberty A, Cullimore JV (2003) Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 133(4):1893–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passricha N, Saifi SK, Singh R, Kharb P, Tuteja N (2019) Receptor-like kinases control the development, stress response, and senescence in plants. Senescence signalling and control in plants. Pp.199–210

  • Peumans WJ, Van Damme EJ. Lectins as plant defense proteins (1995) Lectins as plant defence proteins. Plant Physiol 109(2):347–352

  • Pratap A, Douglas C, Prajapati U, Kumari G, War AR, Tomar R, Pandey AK, Dubey S (2020) Breeding progress and future challenges: Biotic stresses. In: Nair, RM, Schafleitner R and Lee-Suk-ha (Eds.) The mungbean genome, Springer Nature, Switzerland, pp: 55–80. https://doi.org/10.1007/978-3-030-20008-4_5

  • Saeed B, Baranwal VK, Khurana P (2016) Identification and expression profiling of the lectin gene superfamily in mulberry. The plant genome 9:1–13

    Article  CAS  Google Scholar 

  • Sasabe M, Sasabe M, Naito K, Sasabe M, Naito K, Suenaga H, Sasabe M, Naito K, Suenaga H, Ikeda T (2007) Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq 18(2):152–159

    Article  CAS  PubMed  Google Scholar 

  • Sehrawat N, Yadav M, Bhat KV, Sairam RK, Jaiwal PK (2015) Effect of salinity stress on mungbean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. Journal of Agricultural Sciences, Belgrade 60(1):23–32

    Article  Google Scholar 

  • Sharma S, Pandey AK, Singh K, Upadhyay SK (2016) Molecular characterization and global expression analysis of lectin receptor kinases in bread wheat (Triticum aestivum). PLoS One 11(4):e0153925

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB (2007) S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 19(1):94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu SH (2001) Bleecker AB (2001) plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113:22

    Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Velmurugan A, Gupta DS, Kumar J, Kesari R, Konda A, Singh NP, Roy SD, Biswas U, Kumar RR, Singh S (2019) Draft genome sequence of a less-known wild Vigna: beach pea (V. marina cv. ANBp-14-03). The Crop J 7(5):660–666

    Article  Google Scholar 

  • Singh CM, Kumar R, Mishra SB, Pandey A, Arya M (2015) Characterization of mungbean genotypes against Mungbean Yellow Mosaic Virus and Cercospora leaf spot diseases under north east plain zone. Int J Agric Environ Biotechnol 8:119–125

    Article  Google Scholar 

  • Singh CM, Singh P, Pratap A, Pandey R, Purwar S, Vibha DCA, Baek K-H, Mishra AK (2019) Breeding for enhancing legumovirus resistance in mungbean: current understanding and future directions. Agronomy 9:622

    Article  CAS  Google Scholar 

  • Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, Desclos-Theveniau M, Chu PW, Schulze B, Chinchilla D, Boller T (2012) The lectin-receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24(3):1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souframanien J, Raizada A, Dhanasekar P, Suprasanna P (2020) Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. BioRxiv. https://doi.org/10.1101/2020.06.21.163923

  • Srideepthi R, Krishna MS, Suneetha P, Krishna RS, Karthikeyan S (2020) Genome-wide identification, characterization and expression analysis of non-RD receptor like kinase gene family under Colletotrichum truncatum stress conditions in hot pepper. Genetica. 12:1–14

    Google Scholar 

  • Sun M, Qian X, Chen C, Cheng S, Jia B, Zhu Y, Sun X (2018) Ectopic expression of GsSRK in Medicago sativa reveals its involvement in plant architecture and salt stress responses. Frontiers Plant Sci 9:226

  • Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y (2013) A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237(6):1527–1545

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Sakai H, Yoshitsu Y, Muto C, Anai T, Pandiyan M, Senthil N, Tomooka N, Naito K (2019) Domesticating Vigna stipulacea: a potential legume crop with broad resistance to biotic stresses. Frontiers Plant Sci 10:1607

    Article  Google Scholar 

  • Teixeira MA, Rajewski A, He J, Castaneda OG, Litt A, Kaloshian I (2018) Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics 19(1):239

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomooka N, Isemura T, Naito K, Kaga A, Vaughan D (2014) Vigna Species. In: Singh M, Bisht I, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2023-7_9

    Chapter  Google Scholar 

  • Tompson JD, Gibson T, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols Bioinform pp:2–3

  • Tordai H, Bányai L, Patthy L (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461(1–2):63–67

    Article  CAS  PubMed  Google Scholar 

  • Tsaneva M, De Schutter K, Verstraeten B, Van Damme EJM (2019 Jan 20) Lectin sequence distribution in QTLs from Rice (Oryza sativa) suggest a role in morphological traits and stress responses. Int J Mol Sci 20(2):437. https://doi.org/10.3390/ijms20020437

    Article  CAS  PubMed Central  Google Scholar 

  • Ujinwal M, Sahani PA, Singh N (2019) Comparative sequence and structural analysis of lectin protein in chickpea (Cicer arietinum L.) and their relationship with fabaceae family. Int J Proteom Bioinform 4(1):001–006

    Google Scholar 

  • Vaid N, Macovei A, Tuteja N (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Pandey P, Srivastava VK, Tuteja N (2015) Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Bio 88(1–2):193–206

    Article  CAS  Google Scholar 

  • Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins. Adv Bot Res 48:107–209

    Article  Google Scholar 

  • Van Holle S, Van Damme EJ (2015) Distribution and evolution of the lectin family in soybean (Glycine max). Molecules 20(2):2868–2891

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) Mapchart: sofware for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ (2015) Mechanism of alternative splicing and its regulation. Biomedical Rep 3(2):152–158

    Article  CAS  Google Scholar 

  • Xu Z, Gao L, Tang M, Qu C, Huang J, Wang Q, Yang C, Liu G, Yang C (2017) Genome-wide identification and expression profile analysis of CCH gene family in Populus. Peer J 5:e3962

    Article  PubMed  Google Scholar 

  • Yang X, Jawdy S, Tschaplinski TJ, Tuskan GA (2009) Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus. Genomics 93(5):473–480

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Labbé J, Muchero W, Yang X, Jawdy SS, Kennedy M, Johnson J, Sreedasyam A, Schmutz J, Tuskan GA, Chen JG (2016) Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genomics 17(1):699

    Article  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Zeng JK, Li X, Zhang J, Ge H, Yin XR, Chen KS (2016) Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant Cell Environ 39(8):1780–1789

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen Z, Kang Y, Fan Y, Liu Y, Yang X, Shi M, Yao K, Qin S (2020) Genome-wide analysis of lectin receptor-like kinases family from potato (Solanum tuberosum L.). peer J 8:e9310

  • Zupin M, Sedlar A, Kidric M, Meglic V (2017) Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress. J Plant Res 130:735–745

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of data and material

All the data generated in the experiments are presented in manuscript and its supplementary files.

Funding

This work was done in absence of financial support.

Author information

Authors and Affiliations

Authors

Contributions

PS and AKM conceived the idea and planned the work; AKM performed the GO analysis; CMS analyzed rest of the data; PS and AKM drafted the manuscript, and CMS edited the manuscript. All authors read the manuscript and approved for publication.

Corresponding author

Correspondence to Chandra Mohan Singh.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest among them.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1

(DOCX 28 kb)

Table S2

(DOCX 20 kb)

Supplement Figure-1

: The proportion of G-type, L-type and C-type VrLecRLK genes in mungbean, rice, Arabidopsis and soybean. (JPG 202 kb)

Supplement Figure-2

: Number of VrLecRLK genes present on respective choromosome in mungbean. (JPG 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Mishra, A.K. & Singh, C.M. Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek). J Appl Genetics 62, 223–234 (2021). https://doi.org/10.1007/s13353-021-00613-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-021-00613-8

Keywords

Navigation