Cytogenetic investigation of Arctic char × brook trout F1, F2 and backcross hybrids revealed remnants of the chromosomal rearrangements


Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) hybridize and their offspring is viable and fertile. This may be a real treat for the native European stocks of Arctic char which gene pools might be unintendedly contaminated with the genetic elements of brook trout. On the other hand, hybrids of these two species are appreciated by customers and have some potential for the aquaculture. Moreover, Salvelinus hybrids and backcross individuals are interesting models in the research focused on influence of hybridization on the genomic organization and chromosome rearrangements. Thus, the main goal of the present study was to examine chromosomes of Arctic char × brook trout F1, F2 hybrids and backcross individuals and compare with genomic information concerning parental species to recognize karyotypic changes provoked by the hybridization events. Application of conventional and molecular (FISH) techniques allow to identify characteristic chromosomes for both parental species in the hybrid progeny and show multiplicity of cytotypes among different types of crosses with variability in structure and number of chromosome (81–85) and chromosome arm (99–101). Chromosome fragment was detected in the karyotype of one F1 and one backcross individual and the presence of one triploid (3n) fish was documented. Occurrence of chromosomes containing internally located telomeric sequences (ITS) inherited after brook trout or both parental species was shown in F1 and backcross progeny. Moreover, additional CMA3-positive signal on chromosome from Arctic char pair no. 2 in F1 fish and interstitially located active NOR visible on subtelo-acrocentric (F2 hybrid) and acrocentric (Sf × H individual) chromosomes were detected. Described polymorphic chromosomes together with specific, interstitial location of CMA3-positive found in F2 and Sf × H hybrids and DAPI-positive regions observed in H × Sa fish at different uniarmed chromosomes pair presumably are remnants of chromosomal rearrangements. Provided results strongly indicate that the hybridization process influenced the genome organization in the Salvelinus hybrid progeny.


Arctic char (Salvelinus alpinus Linnaeus, 1758) and brook trout (Salvelinus fontinalis Mitchill, 1714) are freshwater char species, members of the genus Salvelinus. Arctic char is the most northern distributed among chars (Johnson 1980) ranging from Canada and Greenland to northern Russia and Europe (Iceland and Scandinavia) (Kottelat and Freyhof 2007). Brook trout is indigenous to North America and Canada and has been widely introduced to South America, Europe, Asia and Southern Africa (Kottelat and Freyhof 2007). Both species may exhibit different morphs (benthic and pelagic) and ecological forms: freshwater landlocked populations (lacustrine and riverine) and anadromous stocks (Jonsson and Jonsson 2001; Klemetsen et al. 2003; Morinville and Rasmussen 2003).

Under natural conditions, Arctic char and brook trout easily hybridize and reciprocal crosses of these two species, F2 hybrids and backcrosses are viable and usually fertile (Hammar et al. 1991). As a consequence, introgressive hybridization leading in incorporation of Arctic char mitochondrial genome into brook trout was reported in the nature (Bernatchez et al. 1995; Glémet et al. 1998). Moreover, Faulks and Östman (2016) found the evidence for hybridization of native Arctic char and introduced brook trout populations where majority of fish were F2 hybrids with mtDNA of both species. The ease with which both Salvelinus species hybridize can be a real treat for the European stocks of Arctic char which gene pools might be contaminated with the genetic elements of brook trout that escaped from the aquaculture farms (Castillo et al. 2008; Perrier et al. 2013).

On the other hand, both Arctic char and brook trout represent an aquaculture importance (Fischer et al. 2009; Sæther et al. 2013) and Salvelinus crosses are considered to have potential for cultivation under the control conditions. Aquaculture sector, when looking for fish that show unique characteristics and traits, cross different species producing F1, F2 and backcross hybrids. Some of these hybrids are produced to meet particular expectations of the customers such as meat colour, structure, and taste or because they possess better performances of growth rate or survival when compared with the parental species, among others (Chevassus 1979; Kerr 2000; Suzuki and Fukuda 1972, 1973). Salvelinus fish including hybrids are more resistant for the viruses infections than rainbow trout (Oncorhynchus mykiss) what make them better for the aquaculture in regions with frequent outbreaks of VHS disease (Dorson et al. 1991). Moreover, hybrids of brook trout and Arctic char show better growth rate than parental species (Sutterlin et al. 1977; Suzuki and Fukuda 1972) as well as better total biomass production and lower mortality after 3 years post-hatch than brook trout (Dumas et al. 1996). In Germany, Arctic char × brook trout hybrids known as “Elsässer Saibling” are famous by its exceptional taste (Piwernetz 2002).

Such hybrids are also a valuable material for research concerning influence of hybridization on the genomic organization and chromosome rearrangements. In the present research, we investigated karyotypic and genomic changes in the F1 and F2 brook trout and Arctic char hybrids and in the backcross individuals produced under the aquaculture conditions. Both species are closely related; however, their karyotypes present some differences. A rather stable karyotype of brook trout (2n = 84, NF = 100) (Fujiwara et al. 1998; Hartley 1987; Ocalewicz et al. 2004) contrasts with chromosome and chromosome arm number polymorphism (2n = 74–84, NF = 98-100) observed in the Arctic char from different locations (Phillips and Ihssen 1985; Pomianowski et al. 2012; Reed and Phillips 1997; Vasiliev 1975). Moreover, both species show sometimes unique genomic location of GC- and AT-rich chromatin, nucleolar organizer regions (NORs) or telomeric DNA sequences (Ocalewicz et al. 2004; Pomianowski et al. 2012; Śliwińska-Jewsiewicka et al. 2015; Table 1). Thus, it has been tempting to study changes in the chromosome and chromosome arm numbers, chromosome structures, NORs, distribution of DAPI- and CMA3-positive regions, and telomeric DNAs in Arctic char and brook trout F1 and F2 hybrids and backcrosses.

Table 1 Comparative cytogenetic analysis of Arctic char S. alpinus and brook trout S. fontinalis from Inland Fisheries Institute broodstock

Materials and methods


Char (Salvelinus) hybrid lines (Table 2) were obtained as a result of crossing of brook trout and Arctic char: F1 (S. alpinus × S. fontinalis), F2 (S. fontinalis × S. alpinus) × (S. fontinalis × S. alpinus), backcross S. fontinalis × (S. fontinalis × S. alpinus) and reverse cross; S. alpinus × (S. fontinalis × S. alpinus). All fish were bred and kept at the Department of Salmonid Research, Inland Fisheries Institute in Olsztyn, Rutki, Poland. In total, 92 fish were sampled from 0+,1+,2+ individuals at 2000–2020.

Table 2 Diploid chromosome number (2n), chromosome arm number and chromosomes characteristic of the parent brook trout and Arctic char species from Inland Fisheries Institute broodstock occurring in the F1, F2 and backcross generations


Chromosome preparation

Fish were sacrificed and metaphase spreads were obtained from the head kidney tissues using conventional in vivo “splash” technique according to Ráb and Roth (1988). Total number of 2510 metaphase plates were analysed among all studied fish.

Banding techniques, FISH protocols and image processing

Chromosomes were initially stained with the buffered Giemsa solution (10%, 10 min) for visualization and description of the chromosome morphology. Active nucleolus organizer regions (NORs) were visualized using impregnation with silver nitrate (AgNO3) as described by Howell and Black (1980). Chromomycin A3 (CMA3) fluorochrome staining was used to identify GC-rich chromosomal regions (Sola et al. 1992). For identification of AT-rich chromatin bearing sites, chromosomes were stained with 4,6-diamidino-2-phenylindole (DAPI) using antifade solution Vectashield with 1.5 μg/ml DAPI (Vector, Burlingame, CA). Fluorescence in situ hybridization (FISH) technique was applied for detection of telomeric DNA repeats using a telomere PNA (peptide nucleic acid) probe conjugated with FITC (DAKO, Denmark) according to the manufacturer’s protocol with some modifications (Ocalewicz et al. 2013a). Briefly, chromosomal DNA was denaturated at 85 °C for 5 min under the coverslip in the presence of the telomere PNA probe. Hybridization took place in the darkness at room temperature for at least 40 min. Chromosomes were counterstained with 25 μl Vectashield with DAPI. Metaphase plates were examined under a Zeiss Axio Imager.A1 microscope equipped with a fluorescent lamp and a digital camera. Images were captured and the electronic processing of the images was performed using Band View/FISH View software (Applied Spectral Imaging).


Size and position polymorphism of NORs, GC- and AT-rich chromatin

F1 hybrids ♀ S. alpinus × ♂ S. fontinalis

AgNO3 staining revealed from one to five positive signals on metaphase spreads located in the telomeric area of the large a chromosome or on medium-sized st-a chromosomes on the p arm, where duplication of the region was visible in one fish. CMA3 staining showed from two to seven positive signals in the examined fish. Signals were located in the end of both p and q arms of 2p chromosome (Fig. 1a) as well as on large- and medium-sized a chromosomes in the end of q arm. In examined individuals from two to seven chromosomes with DAPI, positive sites (AT-rich) have been observed. Described regions were placed on m chromosomes in the end of p and q arm (one fish) or only in telomeric area of q arm, and on st-a chromosome (p arm) or a chromosomes (end of q arm). DAPI staining revealed one chromosome fragment in the karyotype of one individual (Table 2) (Fig. 5a).

Fig. 1

Polymorphic location of AgNOR, GC- and AT-rich regions on investigated fish chromosomes: a F1 Sa × Sf fish: chromomycin A3 staining revealed chromosome from Arctic char pair no. 2 with additional CMA3-positive signal on the long arm; b F2 fish: subtelo-acrocentric chromosome with interstitially located active NOR region (p arm); c F2, backcross Sf × H fish: upper row—DAPI staining, lower row—chromomycin A3. Arrows indicate GC-rich chromatin located interstitially at the proximal part of the long arm; d backcross Sf × H fish: sequentially stained DAPI (left), chromomycin A3 (in the middle) and silver nitrate (right) acrocentric chromosome with interstitially located active NOR region colocated with CMA3-positive region in the distal part of the long arm; e Backcross H × Sf fish: arrows indicate large acrocentric chromosome with duplicated AT-rich region revealed by DAPI staining f backcross H × Sa fish: DAPI staining revealed AT-rich region located interstitially at the proximal part of the long arm (marked by arrows) of uniarmed chromosomes pair. Bar equals 5 μm

F2 hybrids (♀ S. fontinalis × ♂ S. alpinus) × ♂ (♀ S. fontinalis × ♂ S. alpinus)

In F2, individuals from three to seven AgNOR sites were seen on chromosomes. They were located in the end of the long arm of medium-sized m and a chromosomes as well as on st-a chromosomes on p arm where duplication of the region (one fish) and its interstitial location (other individual) was observed (Fig. 1b). CMA3 signals were seen on from three to six chromosomes. GC-rich chromatin was located on st-a chromosomes in the end of p or both p and q arms and on acrocentric chromosomes where CMA3-positive site was seen in the end of the long arm. Pair of uniarmed chromosomes with interstitially, subcentromeric location of signal was seen in one fish (Fig. 1c). From one to three DAPI, positive signals were detected in that type of cross located on p and q or only on long arm of the m chromosomes (Fig. 5b).

Backcross ♀ S. fontinalis × ♂ (♀ S. fontinalis × ♂ S. alpinus)

AgNO3 staining revealed from one to eight positive signals on metaphase spreads. Active NORs were located on st-a chromosomes in the end of short arm where overlapped with CMA3 signal in two different individuals, and on uniarmed chromosomes in telomeric area of the long arm (q). Moreover, active NORs were detected on interstitial, subtelomeric location on large a chromosome in one individual where overlapped with CMA3 signal (Fig. 1d). CMA3 staining revealed from three to six CMA3-positive signals in the examined individuals. GC-rich sites were detected in the end of q arm of m and a chromosomes and on st-a chromosomes in telomeric area of p arm. Moreover, as in F2 generation pair of uniarmed chromosomes with interstitially, subcentromeric location of CMA3-positive signal was seen in one fish (Fig. 1c). There were from one to three DAPI signals visible on chromosomes revealing AT-rich chromatin on medium-sized m chromosome in the end of q arm apart from single or pair 9p (Fig. 5c).

Backcross (♀ S. fontinalis × ♂ S. alpinus) × ♂ S. fontinalis

In described backcross, AgNO3 staining revealed from one to six signals on metaphase spreads. Active NOR sites were visible on large m chromosome in the end of long arm (q) and on varying in size st-a chromosomes in the telomeric region of p arm where duplication was visible in one fish. Moreover, AgNOR sites were visible in the end of the long arm of a chromosomes where duplication was detected in one fish. From two to four, CMA3 signals were seen in that type of cross. GC-rich sites were located on varied in size: st-a chromosomes in the end of long arm and in the telomeric area of the uniarmed chromosomes. In one individual, interstitial, subcentromeric location of CMA3 signal was detected on single a chromosome, and its morphology corresponded with chromosome pair detected in F2 generation. DAPI staining revealed from two to three AT-rich sites on chromosomes, in the majority of individuals located at the end of the long arm of two (diploids) or three (triploids) medium-sized m chromosomes (Fig. 2). In four fish, large uniarmed chromosome with DAPI-positive signal reaching half of the q arm was visible (Fig. 1e, Fig. 5d).

Fig. 2

Karyotype of the backcross H × Sf individual with total chromosome number 3n = 122. Chromosomes stained with DAPI fluorochrome. Arrows marked chromosomes containing regions rich in AT base pairs. Bar equals 10 μm

Backcross ♀ S. alpinus × ♂ (♀ S. fontinalis × ♂ S. alpinus)

In described individuals from two to six, active NOR sites were presented. NORs were placed on pair of large, medium-sized or single st-a chromosomes in the end of p arm and on single large and pair of small a chromosomes in the telomeric area of the long (q) arm. CMA3 staining showed from two to eight GC-rich sites. Regions were visible on m chromosome in two fish placed in the end of p and q arm, and on the large, medium-sized, and small st-a chromosomes in the end of long arm. Additionally, described sites were located on large and small a chromosomes in the end of the long arm. DAPI staining showed from one to two AT-rich signals on metaphase spreads located on large m and a chromosomes in the end of q arm (Fig. 5e).

Backcross ♀ (♀ S. fontinalis × ♂ S. alpinus) × ♂ S. alpinus

In described cross number of active NOR ranged from one to four. NORs were placed on large m chromosome in the end of the long (q) arm and on large, medium-sized and small st-a chromosomes in the end of p arm where duplication of the region was detected in one fish. Additionally, AgNORs were visible on large and small a chromosomes in the end of the long arm in most of the karyotyped fish. CMA3 staining revealed from two to five signals in the described metaphase spreads. Apart from GC-rich regions located on recognizable brook trout and Arctic char chromosomes, described sites were placed on large st-a chromosome in the end of long arm and on large and small a chromosome (end of q arm). DAPI staining showed from one to three signals on investigated metaphase spreads. AT-rich sites were located in the end of q or both arms of m-sm chromosome or in the end of q arm on a chromosome. In few individuals, pair of large acrocentric chromosomes with interstitially, subcentromerically located DAPI-positive blocks was evidenced (Fig. 1f). DAPI staining revealed one chromosome fragment in the karyotype of one individual (Fig. 3, Fig. 5f).

Fig. 3

Metaphase plate of backcross H × Sa after DAPI staining. Arrow indicates chromosome fragment. Bar equals 10 μm

Fluorescence in situ hybridization

Application of PNA-FISH with telomeric probe in the reciprocal S. fontinalis × H backcross individuals showed hybridization signals at the terminal positions of all chromosomes among studied fish. Moreover, one member of S. fontinalis × H cross had two chromosomes with internally located telomeric signals (ITSs) (Fig. 4a). ITSs were located interstitially on the p arm of the pair of st chromosomes that was Salvelinus fontinalis chromosomes no. 11 (Śliwińska-Jewsiewicka et al. 2015). Similarly, ITS signal was detected on single chromosome of the same type in three members H × S. fontinalis cross (Fig. 4b).

Fig. 4

Metaphase spreads after application of PNA-FISH with telomeric probe. Arrows point on a pair (backcross Sf × H) and b single (backcross H × Sf) brook trout chromosomes 11p containing internally located telomeric sequence (ITS). Bar equals 10 μm


Hybrids of brook trout and Arctic char are appreciated by the customers; however, the ease in which F1 individuals are able to mate and to create post-F1 generations may negatively affect valuable broodstocks of parental species when unintendedly backcrossed. Indeed, F1 and post-F1 hybrid swarm (83–100%) was confirmed in several hatchery stocks (Gross et al. 2004). On the other hand, F1 char hybrids may be used for the reconstitution of a genetic strain of the paternal species by programme of repeated backcrossing. Such method might be considered to recover genetic information from the fish cryopreserved spermatozoa from the extinct population or even species (Ocalewicz et al. 2013b). Although recovery of the gene pool from the repeated backcrossing takes a relatively long time, it is still a more efficient approach than an interspecies androgenesis process (Babiak et al. 2002; Ocalewicz et al. 2013b; Michalik et al. 2014). Interspecies androgenesis fails because of interspecies incompatibilities between egg cytoplasm and sperm genome. Application of eggs originated from Arctic char and brook trout hybrids seemed to overcome this problem and androgenetic development of brook trout in such oocytes was possible (Ocalewicz et al. 2013b). Taking into account the research and results described above, it seems to be indispensable to provide cytogenetic investigation among Arctic char × brook trout F1, F2 fish and backcross generations to assess the impact of hybridization on their genomic organization.

Our data showing high variability in the karyotype structure among F1 individuals (2n = 81–85; NF = 99–102) (Fig. 5) contrasts with early reports presenting stable number of chromosomes (82) in F1 brook trout × Arctic char individuals (Disney and Wright Jr 1987). Arctic chars can be carriers of centric fusion(s) (Robertsonian polymorphism) (Pomianowski et al. 2012; Vasiliev 1975) what results in production of gametes containing varied numbers of chromosome. Occurrence of centric fusion in one of the parental species as well as de novo centric fusion and fission (decreasing/increasing chromosome numbers) may be responsible for the multiplicity of cytotypes in F1 and backcross generations. In contrast, one stable karyotype variant was detected in most of the F2 individuals what indicates that some variants are supported.

Fig. 5

Ideograms of chromosomes from examined Arctic char and brook trout hybrids and backcrosses. Chromosomes characteristic for Arctic char and brook trout karyotypes are indicated by red and green symbols respectively pasted above particular chromosomes and corresponded with data collected in Table 2. Chromosomes in brackets are these that number varied in individuals with different chromosome numbers

In the H × Sf backcross group, one individual appeared to be triploid and possessed 122 chromosomes (26 m and 96 a) and might appear in the course of fertilization of an unreduced F1 hybrid egg containing 18 bi- and 66 uniarmed chromosomes by brook trout male gamete (8 bi- and 34 uniarmed chromosomes) followed by elimination of four chromosomes. Triploids were previously described in several crosses of fish (Boroń 2003; Hashimoto et al. 2014) including F1 S. fontinalis × S. alpinus hybrids that karyotype was composed of 124 chromosomes: 26 metacentrics and 98 acrocentrics (Disney and Wright 1987). The cases of spontaneous triploidy were previously described in rainbow trout (Aegerter and Jalabert 2004; Ocalewicz and Dobosz 2009; Thorgaard et al. 1982) and Atlantic salmon (Glover et al. 2015) under hatchery conditions. The post-ovulatory ageing of eggs and their reduced quality are considered to be responsible for spontaneous triploidization (Aegerter and Jalabert 2004).

Both parental species of hybrids show interspecific differences in the location of NORs, GC- and AT-rich blocks of chromatin (Fujiwara et al. 1998; Phillips and Ráb 2001). Number of active NORs in the genome of Arctic char varies from one to eight depending on the location, whereas brook trout represents from three to six AgNO3-positive sites (Phillips and Ihssen 1985; Reed and Phillips 1997; Śliwińska-Jewsiewicka et al. 2015). In Arctic char, NORs are typically distributed on p arm of one m-sm pair and on m-sm and a chromosomes (Phillips et al. 1988) whereas in brook trout NORs are observed on single m chromosome and pair and single st-a chromosomes (Fujiwara et al. 1998; Śliwińska-Jewsiewicka et al. 2015). AgNO3 sites do not always overlap with CMA3-positive sites, which number in Arctic char equals from two to eight (Phillips et al. 1988; Pomianowski et al. 2012) and in brook trout varied from 10 to 20 sites (Phillips and Ihssen 1985; Śliwińska-Jewsiewicka et al. 2015). Variation in the number and location of NORs in parental species leads to NOR polymorphism in the progeny. In F1 fish: Sa × Sf and reciprocal cross number of active NORs varied from one to eight, whereas Disney and Wright Jr (1987) detected NOR sites on up to five chromosomes (m, a) in Sf × Sa fish what may result from different origin of parents of hybrids. Moreover, authors did not report NOR size variation as in the fish described here. Visible bi-armed chromosomes with NOR located at the ends of both arms (pair no. 2 in Sa × Sf fish) are remnants of rearrangements in the progeny. The mechanism leading to described location was proposed by Reed and Phillips (1995) in Salvelinus namaycush where st-a chromosome with multiple NOR was detected in the karyotype. Described chromosome may be a result of translocation of chromosomal fragment carrying rRNA genes from telomeric region of the uniarmed chromosome to proximal part of its homologue. In a similar way, chromosome 2p;q could have been formed if the translocation had occurred between the metacentric chromosome containing NOR at the end of p arm and the uniarmed chromosome with NOR placed in the same area. In part of fish from F2 and backcross generation, interstitial location of NOR was shown on st-a chromosome. Such specific location might have been a result of pericentromeric inversion in the S. alpinus large bi-armed chromosome with partial deletion of the short arm of newly created chromosome. In one Sf × H individual, large a chromosome with interstitially, subtelomerically located CMA3-positive signal overlapped with active NOR. Similar chromosome was described in Arctic chars from aquaculture broodstock (Pomianowski et al. 2019). It may have appeared in the course of pericentromeric inversion of st-a chromosome with NOR located on the short arm. Finally, we described for the first time in Salmonidae family single (H × Sf) and pair (H × H, Sf × H) of large uniarmed chromosomes with unusual, interstitial subcentromeric location of CMA3-positive signal. Its origin is probably the result of tandem fusion of two a chromosomes with loss of one centromere.

In members of the genus Salvelinus, DAPI-positive heterochromatin blocks are usually visible on centromeric and telomeric regions of many chromosomes (Hartley 1989; Mayr et al. 1988; Pleyte et al. 1989; Ueda and Ojima 1983). Described location was revealed in the majority of studied fish except H × Sa individuals, where pair of large acrocentrics with interstitially located DAPI band is observed and in H × Sf individuals possessing large uniarmed chromosome with DAPI signal reaching half of the arm. Both chromosomes were previously reported in the farmed Arctic chars (Pomianowski et al. 2019) and taking into consideration their size, these chromosomes appeared in the course of the tandem fusion. Tandem fusions are rearrangements that affect number of chromosomes and chromosome arms and are responsible for differences in the chromosome number in European (2n = 54) and North American (2n = 58) populations of Atlantic salmon (Salmo salar) (Hartley and Horne 1984a, 1984b; Ueda and Kobayashi 1990). In the karyotypes of Atlantic salmon from European population, interstitial DAPI signals were located on pair of bi-armed chromosomes and, similarly as in investigated hybrids, on the long arms of pair of a chromosomes (Phillips 2005). Tandem fusions are also responsible for karyotype variability in Oreochromis niloticus and O. karongae (Chew et al. 2002; Mota-Velasco et al. 2010).

Internally located telomeric DNA sequences usually appeared as a result of chromosome rearrangements including fusions and inversions (Mota-Velasco et al. 2010; Ocalewicz et al. 2013a; Perez et al. 1999). In Salmonidae, ITSs have been detected on chromosome(s) of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) (Abuin et al. 1996), lake trout (Salvelinus namaycush) (Reed and Phillips 1995), brook trout (Ocalewicz et al. 2004; Śliwińska-Jewsiewicka et al. 2015), Arctic char (Pomianowski et al. 2012) and European grayling (Ocalewicz et al. 2013a). In the brook trout, ITS are observed on p-arm of one or two subtelomeric chromosomes, adjacent to the GC-rich nucleolar organizer region (Ocalewicz et al. 2004; Śliwińska-Jewsiewicka et al. 2015), whereas in Arctic char from Rutki strain ITS was detected at the subtelomeric region of the q arm of the largest acrocentric chromosome (Pomianowski et al. 2012). Here, in F1 generation hybrids (Sa × Sf), we confirmed the presence of single ITS bearing chromosomes inherited after both Salvelinus parental species. Presence of the same ITS bearing chromosomes was previously described in one Arctic char individual from the aquaculture broodstock (Pomianowski et al. 2019) what indicates past hybridization events during breeding practices. Identification of two brook trout chromosomes with ITS in Sf × H backcross, and one such chromosome in H × Sf fish, points on different type of chromosome selection during meiosis.

Genomic incompatibilities between parental species may result in increased mortality of the hybrid progeny. In Arctic char × brook trout F1 hybrids and Sa × H backcross individuals, survival rates before hatching reached 70.4% and 57.5%, respectively (Michalik et al. 2014; Ocalewicz et al. 2013b). In turn, F2 hybrids and backcrosses with genomic predominance of brook trout exhibited more than 90% of survival. In our study, presence of one chromosomal fragment in the karyotypes of Sa × Sf and backcross H × Sa fish was confirmed. It evidenced that nucleocytoplasmic incompatibility between eggs and sperm originated from different species may result in increased mortality of the hybrid progeny resulted from the chromosome elimination (Fujiwara et al. 1997; Sakai et al. 2007). Chromosome fragments were also visible in metaphase spreads obtained from inviable hybrids of rainbow trout and sea trout (Polonis et al. 2018). Moreover, chromosome fragments were also observed in Arctic chars from the aquaculture broodstock (Pomianowski et al. 2019).

Provided cytogenetic data confirmed usefulness of interspecific Salvelinus F1, F2 and backcross hybrids as an object on karyotype rearrangements research and their possible future use in fish stock restoration studies.


  1. Abuin M, Martinez P, Sanchez L (1996) Localization of the repetitive telomeric sequence (TTAGGG)n in four salmonid species. Genome 39:1035–1038.

    CAS  Article  PubMed  Google Scholar 

  2. Aegerter S, Jalabert B (2004) Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture 231:59–71.

    Article  Google Scholar 

  3. Babiak I, Dobosz S, Goryczko K, Kuzminski H, Brzuzan P, Ciesielski S (2002) Failure of interspecies androgenesis in salmonids. J Fish Biol 61(2):432–447.

    Article  Google Scholar 

  4. Bernatchez L, Glémet H, Wilson C, Danzmann RG (1995) Introgression and fixation of Arctic char (Salvelinus alpinus) mitochondrial genome in an allopatric population of brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 52:179–185.

    CAS  Article  Google Scholar 

  5. Boroń A (2003) Karyotypes and cytogenetic diversity of the genus Cobitis (Pisces, Cobitidae) in Poland: a review. Cytogenetic evidence for a hybrid origin of some Cobitis triploids. Folia Biol (Krakow) 51(Suppl):49–54

    Google Scholar 

  6. Castillo AGF, Ayllon F, Moran P, Izquierdo JI, Martinez JL, Beall E, Garcia-Vazquez E (2008) Interspecific hybridization and introgression are associated with stock transfers in salmonids. Aquaculture 278:31–36.

    CAS  Article  Google Scholar 

  7. Chevassus B (1979) Hybridization in salmonids: results and perspectives. Aquaculture 17:113–128.

    Article  Google Scholar 

  8. Chew JS, Oliveira C, Wright JM, Dobson MJ (2002) Molecular and cytogenetic analysis of the telomeric (TTAGGG)n repetitive sequences in Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosoma 111:45–52.

    CAS  Article  PubMed  Google Scholar 

  9. Disney JE, Wright JE Jr (1987) Cytogenetic analyses of a Salvelinus hybrid reveal an evolutionary relationship between the parental species. Cytogenet Cell Genet 45:196–205.

    CAS  Article  PubMed  Google Scholar 

  10. Dorson M, Chevassus B, Tothy C (1991) Comparative susceptibility of three species of char and of rainbow trout × char triploid hybrids to several pathogenic salmonid virus. Dis Aquat Org 11:217–224.

    Article  Google Scholar 

  11. Dumas S, Blanc JM, Vallée F, Audet C, de la Neüe J (1996) Survival, growth, sexual maturation and reproduction of brook charr, Salvelinus fontinalis (Mitchill), Arctic charr, Salvelinus alpinus L., and their hybrids. Aquac Res 27:245–253.

    Article  Google Scholar 

  12. Faulks L, Östman Ö (2016) Genetic diversity and hybridisation between native and introduced Salmonidae fishes in a Swedish alpine lake. PLoS One 11(3):e0152732.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Fischer GJ, Held J, Hartleb C, Malison J (2009) Evaluation of brook trout production in a coldwater recycle aquaculture system. Aquac Eng 4:109–113.

    Article  Google Scholar 

  14. Fujiwara A, Abe S, Yamaha E, Yamazaki E, Yamazaki F, Yoshida MC (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106:44–52.

    CAS  Article  PubMed  Google Scholar 

  15. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1998) Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosom Res 6:463–471.

    CAS  Article  Google Scholar 

  16. Glémet H, Blier PU, Bernatchez L (1998) Geographical extent of Arctic char (Salvelinus alpinus) mtDNA introgression in brook char populations (S. fontinalis) from eastern Quebec, Canada. Mol Ecol 7:655–1662.

    Article  Google Scholar 

  17. Glover KA, Madhun AS, Dahle G, Sørvik AGE, Wennevik V, Skaala Ø, Morton HC, Hansen TJ, Fjelldal PG (2015) The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet 16:37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gross R, Gum B, Reiter R, Kuhn R (2004) Genetic introgression between Arctic charr (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in Bavarian hatchery stocks inferred from nucleolar and mitochondrial DNA markers. Aquac Int 12:19–32.

    CAS  Article  Google Scholar 

  19. Hammar J, Dempson B, Verspoor E (1991) Natural hybridization between Arctic char (Salvelinus alpinus) and brook trout (S. fontinalis): evidence from northern Labrador. Can J Fish Aquat Sci 48:1437–1445.

    Article  Google Scholar 

  20. Hartley SE (1987) The chromosomes of salmonid fishes. Biol Rev 62:197–214.

    Article  Google Scholar 

  21. Hartley SE (1989) Chromosomes and constitutive heterochromatin distribution in Arctic charr, Salvelinus alpinus (L.) (Pisces: Salmonidae). Genetica 79(3):161–166.

    Article  Google Scholar 

  22. Hartley SE, Horne MT (1984a) Chromosome polymorphism and constitutive hetero-chromatin in Atlantic salmon, Salmo salar. Chromosoma 89:377–380.

    Article  Google Scholar 

  23. Hartley SE, Horne MT (1984b) Chromosome relationship in the genus Salmo. Chromosoma 90:229–237.

    CAS  Article  PubMed  Google Scholar 

  24. Hashimoto DT, Senhorini JA, Foresti F, Martínez P, Porto-Foresti F (2014) Genetic identification of F1 and post-F1 Serrasalmid juvenile hybrids in Brazilian aquaculture. PLoS One 9(3):e89902.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36(8):1014–1015.

    CAS  Article  PubMed  Google Scholar 

  26. Johnson L (1980) Chars: salmonid fishes of the genus Salvelinus. Dr W. Junk Publishers, Holland

  27. Jonsson B, Jonsson N (2001) Polymorphism and speciation in Arctic charr. J Fish Biol 58:605–638.

    Article  Google Scholar 

  28. Kerr SJ (2000). F1 splake: an annotated bibliography and literature review. Fish and Wildlife Branch, Ontario Ministry of Natural Resources, Peterborough, Ontario. 79 p. + appendices

  29. Klemetsen A, Amundsen PA, Dempson J, Jonsson B, Jonsson N, O’Connell M, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12(1):1–59.

    Article  Google Scholar 

  30. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Copeia, Germany

    Google Scholar 

  31. Mayr B, Kalat M, Ráb P (1988) Heterochromatins and band karyotypes in three species of salmonids. Theor Appl Genet 76:45–53.

    CAS  Article  PubMed  Google Scholar 

  32. Michalik O, Dobosz S, Wójcik I, Zalewski T, Ocalewicz K (2014) Use of eggs derived from the interspecific charr hybrids to induce androgenetic development of the brook charr (Salvelinus fontinalis Mitchill 1814). Reprod Domest Anim 49:191–196.

    CAS  Article  PubMed  Google Scholar 

  33. Morinville GR, Rasmussen JB (2003) Early juvenile bioenergetic differences between anadromous and resident brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 60(4):401–410.

    Article  Google Scholar 

  34. Mota-Velasco JC, Ferreira IA, Cioffi MB, Ocalewicz K, Campos-Ramos R, Shirak A, Lee B-Y, Martins C, Penman DJ (2010) Characterization of the chromosome fusions in Oreochromis karongae. Chromosom Res 18:575–586.

    CAS  Article  Google Scholar 

  35. Ocalewicz K, Śliwińska A, Jankun M (2004) Autosomal localization of internal telomeric sites (ITS) in brook trout, Salvelinus fontinalis (Pisces, Salmonidae). Cytogenet Genome Res 105:79–82.

    CAS  Article  PubMed  Google Scholar 

  36. Ocalewicz K, Dobosz S (2009) Karyotype variation in the albino rainbow trout (Oncorhynchus mykiss Walbaum). Genome 52(4):347–352.

    CAS  Article  PubMed  Google Scholar 

  37. Ocalewicz K, Furgala-Selezniow G, Szmyt M, Lisboa R, Kucinski M, Lejk AM, Jankun M (2013a) Pericentromeric location of the telomeric DNA sequences on the European grayling chromosomes. Genetica 141:409–416.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Ocalewicz K, Kuzminski H, Pomianowski K, Dobosz S (2013b) Induction of androgenetic development of the brook charr (Salvelinus fontinalis) × Arctic charr (Salvelinus alpinus) hybrids in eggs derived from the parental species. Reprod Biol 13:105–112.

    Article  PubMed  Google Scholar 

  39. Perez J, Moran P, Garcia-Vazquez E (1999) Cloning and physical mapping of Atlantic salmon (Salmo salar L.) telomeric sequences. Heredity 82:409–414.

    CAS  Article  PubMed  Google Scholar 

  40. Perrier C, Guyomard R, Bagliniere J-L, Nikolic N, Evanno G (2013) Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 3(7):2334–2349.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Phillips RB (2005) Chromosome morphology. W: Cadrin S, Kevin D, Friedland J. Waldman R (ed.) Stock identification methods: applications in fishery science. Elsevier Academic Press, Netherlands, pp 273-294

  42. Phillips RB, Ihssen PE (1985) Chromosome banding in salmonid fish: nucleolar organizer regions in Salmo and Salvelinus. Can J Genet Cytol 27:433–440.

    CAS  Article  PubMed  Google Scholar 

  43. Phillips RB, Pleyte KA, Hartley SE (1988) Stock-specific differences in the number and chromosome positions of the nucleolar organizer regions in Arctic char (Salvelinus alpinus). Cytogenet Cell Genet 48:9–12.

    Article  Google Scholar 

  44. Phillips RB, Ráb P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev 76:1–25.

    CAS  Article  PubMed  Google Scholar 

  45. Piwernetz D (2002) Elsässer Saibling in Deutschland auf dem Vormarsch. Fischer & Teichwirt 53:428

    Google Scholar 

  46. Pleyte KA, Phillips RB, Hartley SE (1989) Q band chromosomal polymorphisms in Arctic charr (Salvelinus alpinus). Genome 32:129–133.

    Article  Google Scholar 

  47. Polonis M, Fujimoto T, Dobosz S, Zalewski T, Ocalewicz K (2018) Genomic incompatibility between rainbow trout (Oncorhynchus mykiss) and sea trout (Salmo trutta) and induction of the interspecies gynogenesis. J Appl Genet 59(1):91–97.

    Article  PubMed  Google Scholar 

  48. Pomianowski K, Jankun M, Ocalewicz K (2012) Detection of interstitial telomeric sequences in the Arctic charr (Salvelinus alpinus) (Teleostei: Salmonidae). Genome 55:26–32.

    CAS  Article  PubMed  Google Scholar 

  49. Pomianowski K, Jankun M, Ocalewicz K (2019) Cytogenetic identification of genomic elements of brook trout (Salvelinus fontinalis) in the karyotype of Arctic char (Salvelinus alpinus) from the aquaculture broodstock. JAppl Ichthyol 35(4):963–969.

    CAS  Article  Google Scholar 

  50. Ráb P, Roth P (1988) Cold-blooded vertebrates. In: In: Methods of chromosome analysis. Czechoslovak Biological Society Publishers, Brno

    Google Scholar 

  51. Reed K, Phillips RB (1995) Molecular cytogenetic analysis of the double CMA3 chromosome in lake trout, Salvelinus namaycush. Chromosoma 104:242–251.

    CAS  Article  PubMed  Google Scholar 

  52. Reed KM, Phillips RB (1997) Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosom Res 5(4):221–227.

    CAS  Article  Google Scholar 

  53. Sakai C, Konno F, Nakano O, Iwai T, Yokota T, Lee J, Nishida-Umehara C, Kuriwa A, Matsuda Y, Yamashita M (2007) Chromosome elimination in the interspecific hybrid medaka between Oryzias latipes and O. hubbsi. Chromosom Res 15(6):697–709.

    CAS  Article  Google Scholar 

  54. Sæther BS, Siikavuopio SI, Thorarensen H, Brännäs E (2013) Status of Arctic char (Salvelinus alpinus) farming in Norway, Sweden and Iceland. JPN J Ichthyol 53:833–839.

    Article  Google Scholar 

  55. Sola L, Rossi AR, Iaselli V, Rasch EM, Monaco PJ (1992) Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3 and silver staining. Cytogenet Cell Genet 60:229–235.

    CAS  Article  PubMed  Google Scholar 

  56. Sutterlin AM, MacFarlane LR, Harmon P (1977) Growth and salinity tolerance in hybrids within Salmo sp. and Salvelinus sp. Aquaculture 12:41–52.

    Article  Google Scholar 

  57. Suzuki R, Fukuda Y (1972) Growth and survival of F1 hybrids among salmonid fishes. Bull Freshwater Fish Res Lab Tokyo 21:69–83

    Google Scholar 

  58. Suzuki R, Fukuda Y (1973) Appearance and numerical characters of F1 hybrids among salmonid fishes. Bull Freshwater Fish Res Lab Tokyo 23:5–32

    Google Scholar 

  59. Śliwińska-Jewsiewicka A, Kuciński M, Kirtiklis L, Dobosz S, Ocalewicz K, Jankun M (2015) Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814). Genetica 143:425–432.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Thorgaard GH, Rabinovitch PS, Shen MW, Propp J, Utter FM (1982) Triploid rainbow trout identified by flow cytometry. Aquaculture 29(3–4):305–309.

    Article  Google Scholar 

  61. Ueda T, Kobayashi J (1990) Karyotype differentiation of Atlantic salmon, Salmo salar, especially the sequential karyotype change. La Kromosomo II-58:1967–1972

    Google Scholar 

  62. Ueda T, Ojima Y (1983) Karyotypes with C banding patterns of two species in the genus Salvelinus of the family Salminidae. P JPN Acad B 59:343–346.

    Article  Google Scholar 

  63. Vasiliev VP (1975) Karyotypes of some forms of Arctic char Salvelinus alpinus (L.) from the Kamchatka water bodies. Vopr Ichthyol 15:417–430 (In Russian)

    Google Scholar 

Download references


We would like to thank Prof. Stefan Dobosz and personnel of Inland Fisheries Institute hatchery for fertilization trials leading to obtain different fish hybrid lines examined in this study. We also acknowledge Prof. Małgorzata Jankun-Woźnicka from the University of Warmia and Mazury for help in developing and presentation of cytogenetic data contained in this study.


This work was supported by a scholarship programme for PhD students “DrINNO 2 – building a social potential of highly qualified specialists in Warmia and Mazury” and funds that were provided by the University of Warmia and Mazury in Olsztyn.

Author information




KP and KO are the authors of the research idea. KO coordinated crosses of fishes, analysed their survival and performed FISH. KP performed all cytogenetic analyses (including conventional and FISH procedures, karyotype analysis and analysis of the obtained results). KP and KO wrote the manuscript.

Corresponding author

Correspondence to Konrad Pomianowski.

Ethics declarations

The study complies with the current laws of the Republic of Poland. All applicable international, national and institutional guidelines for the care and use of animals were followed. This article does not contain any studies using human subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Maciej Szydlowski

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pomianowski, K., Ocalewicz, K. Cytogenetic investigation of Arctic char × brook trout F1, F2 and backcross hybrids revealed remnants of the chromosomal rearrangements. J Appl Genetics 62, 151–164 (2021).

Download citation


  • Chromosome fragments
  • Fish
  • Internal telomeric sites (ITS)
  • Interspecific hybrids
  • Salvelinus
  • Triploid fish