RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

RNA sequencing (RNA-seq) by next-generation technology is a powerful tool which creates new possibilities in whole-transcriptome analysis. In recent years, with the use of the RNA-seq method, several studies expanded transcriptional gene profiles to understand interactions between genotype and phenotype, supremely contributing to the field of equine biology. To date, in horses, massive parallel sequencing of cDNA has been successfully used to identify and quantify mRNA levels in several normal tissues, as well as to annotate genes. Moreover, the RNA-seq method has been applied to identify the genetic basis of several diseases or to investigate organism adaptation processes to the training conditions. The use of the RNA-seq approach has also confirmed that horses can be useful as a large animal model for human disease, especially in the field of immune response. The presented review summarizes the achievements of profiling gene expression in horses (Equus caballus).

This is a preview of subscription content, log in to check access.

References

  1. Bellone RR (2010) Pleiotropic effects of pigmentation genes in horses. Anim Genet 41(Suppl 2):100–110

    Article  PubMed  Google Scholar 

  2. Bellone RR, Holl H, Setaluri V, Devi S, Maddodi N, Archer S, Sandmeyer L, Ludwig A, Foerster D, Pruvost M, Reissmann M, Bortfeldt R, Adelson DL, Lim SL, Nelson J, Haase B, Engensteiner M, Leeb T, Forsyth G, Mienaltowski MJ, Mahadevan P, Hofreiter M, Paijmans JL, Gonzalez-Fortes G, Grahn B, Brooks SA (2013) Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse. PLoS One 8(10):e78280

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Betteridge KJ (2007) Equine embryology: an inventory of unanswered questions. Theriogenology 68(Suppl 1):9–21

  4. Binns MM, Boehler DA, Lambert DH (2010) Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim Genet 41:154–158

    Article  PubMed  Google Scholar 

  5. Bissonnette N, Lévesque-Sergerie JP, Thibault C, Boissonneault G (2009) Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality. Reproduction 138:65–80

    CAS  Article  PubMed  Google Scholar 

  6. Bonache S, Mata A, Ramos MD, Bassas L, Larriba S (2012) Sperm gene expression profile is related to pregnancy rate after insemination and is predictive of low fecundity in normozoospermic men. Hum Reprod 27:1556–1567

    CAS  Article  PubMed  Google Scholar 

  7. Brehm W, Burk J, Delling U (2014) Application of stem cells for the treatment of joint disease in horses. Methods Mol Biol 1213:215–228

    Article  PubMed  Google Scholar 

  8. Brommer H, Laasanen MS, Brama PA, van Weeren PR, Helminen HJ, Jurvelin JS (2005) Functional consequences of cartilage degeneration in the equine metacarpophalangeal joint: quantitative assessment of cartilage stiffness. Equine Vet J 37:462–467

    CAS  Article  PubMed  Google Scholar 

  9. Brooks SA, Gabreski N, Miller D, Brisbin A, Brown HE, Streeter C, Mezey J, Cook D, Antczak DF (2010) Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet 6(4):e1000909

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bryant CE, Ouellette A, Lohmann K, Vandenplas M, Moore JN, Maskell DJ, Farnfield BA (2007) The cellular Toll-like receptor 4 antagonist E5531 can act as an agonist in horse whole blood. Vet Immunol Immunopathol 116:182–189

    CAS  Article  PubMed  Google Scholar 

  11. Capomaccio S, Vitulo N, Verini-Supplizi A, Barcaccia G, Albiero A, D'Angelo M, Campagna D, Valle G, Felicetti M, Silvestrelli M, Cappelli K (2013) RNA sequencing of the exercise transcriptome in equine athletes. PLoS One 8(12):e83504

  12. Cheng WS, Tao H, Hu EP, Liu S, Cai HR, Tao XL, Zhang L, Mao JJ, Yan DL (2014) Both genes and lncRNAs can be used as biomarkers of prostate cancer by using high throughput sequencing data. Eur Rev Med Pharmacol Sci 18:3504–3510

    PubMed  Google Scholar 

  13. Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ (2013) RNA-seq analysis of single bovine blastocysts. BMC Genomics 25(14):350

  14. Coleman SJ, Zeng Z, Wang K, Luo S, Khrebtukova I, Mienaltowski MJ, Schroth GP, Liu J, MacLeod JN (2010) Structural annotation of equine protein-coding genes determined by mRNA sequencing. Anim Genet 41:121–130

    Article  PubMed  Google Scholar 

  15. Coleman SJ, Zeng Z, Hestand MS, Liu J, Macleod JN (2013) Analysis of unannotated equine transcripts identified by mRNA sequencing. PLoS One 8(7):e70125

  16. Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD, Chowdhary BP, Raudsepp T (2013) Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS One 8:e56535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Davis BW, Ostrander EA (2014) Domestic dogs and cancer research: a breed-based genomics approach. ILAR J 55:59–68

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Desjardin C, Riviere J, Vaiman A, Morgenthaler C, Diribarne M, Zivy M, Robert C, Le Moyec L, Wimel L, Lepage O, Jacques C, Cribiu E, Schibler L (2014) Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology. BMC Genomics 17(15):798

  19. Dirschl DR, Marsh JL, Buckwalter JA, Gelberman R, Olson SA, Brown TD, Llinias A (2004) Articular fractures. J Am Acad Orthop Surg 12:416–423

    Article  PubMed  Google Scholar 

  20. Ferraz AL, Ojeda A, López-Béjar M, Fernandes LT, Castelló A, Folch JM, Pérez-Enciso M (2008) Transcriptome architecture across tissues in the pig. BMC Genomics 9:173

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giese A, Jude R, Kuiper H, Raudsepp T, Piumi F, Schambony A, Guérin G, Chowdhary BP, Distl O, Töpfer-Petersen E, Leeb T (2002) Molecular characterization of the equine testis-specific protein 1 (TPX1) and acidic epididymal glycoprotein 2 (AEG2) genes encoding members of the cysteine-rich secretory protein (CRISP) family. Gene 299:101–109

    CAS  Article  PubMed  Google Scholar 

  22. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Haase B, Signer-Hasler H, Binns MM, Obexer-Ruff G, Hauswirth R, Bellone RR, Burger D, Rieder S, Wade CM, Leeb T (2013) Accumulating mutations in series of haplotypes at the KIT and MITF loci are major determinants of white markings in Franches-Montagnes horses. PLoS One 8(9):e75071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hamatani T (2012) Human spermatozoal RNAs. Fertil Steril 97:275–281

    CAS  Article  PubMed  Google Scholar 

  25. Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, Orr N, Katz LM, MacHugh DE (2010a) A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5:e8645

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hill EW, McGivney BA, Gu J, Whiston R, MacHugh DE (2010b) A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11:552

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hoang TV, Kumar PK, Sutharzan S, Tsonis PA, Liang C, Robinson ML (2014) Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing. Mol Vis 20:1491–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Horohov DW (2015) The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 66:89–96. doi:10.1016/j.molimm.2014.09.020

    CAS  Article  PubMed  Google Scholar 

  29. Iqbal K, Chitwood JL, Meyers-Brown GA, Roser JF, Ross PJ (2014) RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm. BMC Genomics 90:61

    Google Scholar 

  30. Johnson PJ, Wiedmeyer CE, Messer NT, Ganjam VK (2009) Medical implications of obesity in horses—lessons for human obesity. J Diabetes Sci Technol 3:163–174

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kempisty B, Antosik P, Bukowska D, Jackowska M, Lianeri M, Jaśkowski JM, Jagodziński PP (2008) Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos. Reprod Fertil Dev 20:513–518

    CAS  Article  PubMed  Google Scholar 

  32. Kim MC, Lee SW, Ryu DY, Cui FJ, Bhak J, Kim Y (2014) Identification and characterization of microRNAs in normal equine tissues by Next Generation Sequencing. PLoS One 9(4):e93662

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR (2009) Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85:711–719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147:126–132

    CAS  Article  PubMed  Google Scholar 

  35. Mao S, Sendler E, Goodrich RJ, Hauser R, Krawetz SA (2014) A comparison of sperm RNA-seq methods. Syst Biol Reprod Med 60:308–315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. McGivney BA, McGettigan PA, Browne JA, Evans AC, Fonseca RG, Loftus BJ, Lohan A, MacHugh DE, Murphy BA, Katz LM, Hill EW (2010) Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11:398

    Article  PubMed  PubMed Central  Google Scholar 

  37. McIlwraith CW, Frisbie DD, Kawcak CE (2012) The horse as a model of naturally occurring osteoarthritis. Bone Joint Res 1(11):297–309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. McLoughlin KE, Nalpas NC, Rue-Albrecht K, Browne JA, Magee DA, Killick KE, Park SD, Hokamp K, Meade KG, O’Farrelly C, Gormley E, Gordon SV, MacHugh DE (2014) RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis. Front Immunol 5:396. doi:10.3389/fimmu.2014.00396. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moreton J, Malla S, Aboobaker AA, Tarlinton RE, Emes RD (2014) Characterisation of the horse transcriptome from immunologically active tissues. PeerJ 2:e382

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neundorf RH, Lowerison MB, Cruz AM, Thomason JJ, McEwen BJ, Hurtig MB (2010) Determination of the prevalence and severity of metacarpophalangeal joint osteoarthritis in Thoroughbred racehorses via quantitative macroscopic evaluation. Am J Vet Res 71:1284–1293

    Article  PubMed  Google Scholar 

  41. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2(70):ra21

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pacholewska A, Drögemüller M, Klukowska-Rötzler J, Lanz S, Hamza E, Dermitzakis ET, Marti E, Gerber V, Leeb T, Jagannathan V (2015) The transcriptome of equine peripheral blood mononuclear cells. PLoS One 10(3):e0122011

  43. Park KD, Park J, Ko J, Kim BC, Kim HS, Ahn K, Do KT, Choi H, Kim HM, Song S, Lee S, Jho S, Kong HS, Yang YM, Jhun BH, Kim C, Kim TH, Hwang S, Bhak J, Lee HK, Cho BW (2012) Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-seq. BMC Genomics 13:473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Peffers M, Liu X, Clegg P (2013) Transcriptomic signatures in cartilage ageing. Arthritis Res Ther 15:R98

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ropka-Molik K, Zukowski K, Eckert R, Gurgul A, Piórkowska K, Oczkowicz M (2014) Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method. Anim Genet 45:674–684

    CAS  Article  PubMed  Google Scholar 

  46. Rudolph JA, Spier SJ, Byrns G, Rojas CV, Bernoco D, Hoffman EP (1992) Periodic paralysis in quarter horses: a sodium channel mutation disseminated by selective breeding. Nat Genet 2:144–147

    CAS  Article  PubMed  Google Scholar 

  47. Sabeur K, Ball BA, Corbin CJ, Conley A (2008) Characterization of a novel, testis-specific equine serine/threonine kinase. Mol Reprod Dev 75:867–873

    CAS  Article  PubMed  Google Scholar 

  48. Sarrafian TL, Garcia TC, Dienes EE, Murphy B, Stover SM, Galuppo LD (2015) A nonterminal equine mandibular model of bone healing. Vet Surg 44:314–321. doi:10.1111/j.1532-950X.2014.12279.x

    Article  PubMed  Google Scholar 

  49. Smith RK, Garvican ER, Fortier LA (2014) The current ‘state of play’ of regenerative medicine in horses: what the horse can tell the human. Regen Med 9:673–685

    CAS  Article  PubMed  Google Scholar 

  50. Stefaniuk M, Ropka-Molik K, Piórkowska K, Bereta A, Szpar P, Czerwonka Z, Podstawski Z (2015) Evaluation of minimally invasive muscle biopsy method for genetic analysis in horse. Ann Anim Sci 3:621–627. doi:10.1515/aoas-2015-0017

    Google Scholar 

  51. Świtoński M, Mankowska M, Salamon S (2013) Family of melanocortin receptor (MCR) genes in mammals—mutations, polymorphisms and phenotypic effects. J Appl Genet 54:461–472

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tozaki T, Miyake T, Kakoi H, Gawahara H, Sugita S, Hasegawa T, Ishida N, Hirota K, Nakano Y (2010) A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim Genet 41:28–35

    CAS  Article  PubMed  Google Scholar 

  53. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Tryon RC, White SD, Bannasch DL (2007) Homozygosity mapping approach identifies a missense mutation in equine cyclophilin B (PPIB) associated with HERDA in the American Quarter Horse. Genomics 90:93–102

    CAS  Article  PubMed  Google Scholar 

  55. Vilà C, Leonard JA, Gotherstrom A, Marklund S, Sandberg K, Liden K, Wayne RK, Ellegren H (2001) Widespread origins of domestic horse lineages. Science 291:474–477

    Article  PubMed  Google Scholar 

  56. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Røed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvänen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC; Broad Institute Genome Sequencing Platform; Broad Institute Whole Genome Assembly Team, Lander ES, Lindblad-Toh K (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–7

  57. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Wickramasinghe S, Cánovas A, Rincón G, Medrano JF (2014) RNA-sequencing: a tool to explore new frontiers in animal genetics. Livest Sci 166:206–216

    Article  Google Scholar 

  59. Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y (2009) In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94:125–131

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monika Stefaniuk.

Additional information

Communicated by: Maciej Szydlowski

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stefaniuk, M., Ropka-Molik, K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genetics 57, 199–206 (2016). https://doi.org/10.1007/s13353-015-0320-7

Download citation

Keywords

  • Equus caballus
  • Horse
  • miRNA
  • RNA-seq
  • Transcriptome