Skip to main content

Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook

Abstract

Meeting the food demands and ensuring nutritional security of the ever increasing global population in the face of degrading natural resource base and impending climate change is the biggest challenge of the twenty first century. The consequences of mineral/micronutrient deficiencies or the hidden hunger in the developing world are indeed alarming and need urgent attention. In addressing the problems associated with mineral/micronutrient deficiency, grain legumes as an integral component of the farming systems in the developing world have to play a crucial role. For resource-poor populations, a strategy based on selecting and/or developing grain legume cultivars with grains denser in micronutrients, by biofortification, seems the most appropriate and attractive approach to address the problem. This is evident from the on-going global research efforts on biofortification to provide nutrient-dense grains for use by the poorest of the poor in the developing countries. Towards this end, rapidly growing genomics technologies hold promise to hasten the progress of breeding nutritious legume crops. In conjunction with the myriad of expansions in genomics, advances in other ‘omics’ technologies particularly plant ionomics or ionome profiling open up novel opportunities to comprehensively examine the elemental composition and mineral networks of an organism in a rapid and cost-effective manner. These emerging technologies would effectively guide the scientific community to enrich the edible parts of grain legumes with bio-available minerals and enhancers/promoters. We believe that the application of these new-generation tools in turn would provide crop-based solutions to hidden hunger worldwide for achieving global nutritional security.

This is a preview of subscription content, access via your institution.

References

  • Al-Babili S, Beyer P (2005) Golden rice – five years on the road – five years to go? Trends Plant Sci 10:565–573

    Article  CAS  PubMed  Google Scholar 

  • Aldemir SB, Sever T, Ates D, Yagmur B, Kaya HB, Temel HY, Kahriman A, Ozkan H, Tanyolac MB (2014) QTL mapping of genes controlling Fe uptake in lentil (Lens culinaris L.) seed using recombinant inbred lines. In: Plant and Animal Genome Conference XXII San Diego, CA, January 11–15, P3360 https://pag.confex.com/pag/xxii/webprogram/Paper9689.html. Accessed 23 Nov 2014

  • Aletor VA, Aladetimi OO (1989) Compositional evaluation of some cowpea varieties and some under-utilized edible legumes in Nigeria. Nahrung 33:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Andersson MS, Pfeiffer WH, Tohme J (2014) Enhancing nutritional quality in crops via genomics approaches. In: Tuberosa R et al (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 417–429

    Chapter  Google Scholar 

  • Ates D, Aldemir SB, Sever T, Yagmur B, Kaya HB, Temel HY, Kahriman A, Ozkan H, Tanyolac MB (2014) Identification of QTLs controlling genes to Mn and Zn uptake in lentil seeds. In: Plant and animal genome XXII, San Diego, CA, January 11–15, P 0361. https://pag.confex.com/pag/xxii/webprogram/Paper9687.html. Accessed Nov 23 2014

  • Baloch FS, Karaköy T, Demirbaş A, Toklu F, Özkan H, Hatipoğlu R (2014) Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turk J Agric For 38:591–602

    Article  Google Scholar 

  • Basavarajeshwari R, Rajashekar Reddy BH, Manoa I, Deepika M, Shankar AG (2014) Development of mapping population for grain zinc content in pigeonpea. In: 2nd International Conference on Agricultural & Horticultural Sciences, February 03–05, 2014, Hyderabad, India

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baxter I (2010) Ionomics: the functional genomics of elements. Brief Funct Genom 9:149–156

    Article  CAS  Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Google Scholar 

  • Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11:867–879

    Article  CAS  PubMed  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S–510S

    PubMed  Google Scholar 

  • Bhatnagar M, Bhatnagar-Mathur P, Reddy DS, Anjaiah V, Sharma KK (2011) Crop biofortification through genetic engineering: present status and future directions. In: Genomics and crop improvement: relevance and reservations. Acharya NG Ranga Agricultural University, Hyderabad 500 030 India, pp. 392–407

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031

    Article  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Grusak M, Graham R, Beebe S (2009a) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, Sandoval TA, Caldas GV, Beebe SE, Páes MI (2009b) Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci 49:237–246

    Article  CAS  Google Scholar 

  • Blair MW, Knewtson SJB, Astudillo C, Li CM, Fernandez AC, Grusak M (2010) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–523

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 585467:17

    Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014a) Genomics-assisted breeding in the four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohra A, Jha UC, Kavi Kishor PB, Pandey S, Singh NP (2014b) Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 32:1410–1428

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE (1999) Economics of enhanced micronutrient density in food staples. Field Crop Res 60:165–173

    Article  Google Scholar 

  • Bouis HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16:701–704

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Article  Google Scholar 

  • Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Carvalho S, Vasconcelos M (2013) Producing more with less: ‘omics’ at the service of plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • Casañas F, Pérez-Vega E, Almirall A, Plans M, Sabaté J, Ferreira JJ (2013) Mapping of QTL associated with seed chemical content in a RIL population of common bean (Phaseolus vulgaris L.). Euphytica 192:279–288

    Article  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  Google Scholar 

  • Chen Z, Watanabe T, Shinano T, Okazaki K, Osaki M (2009) Rapid characterization of plant nutrients with an altered ion-profile: a case study using Lotus japonicus. New Phytol 181:795–801

    Article  CAS  PubMed  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:1–21

    Article  Google Scholar 

  • DellaValle DM, Thavarajah D, Thavarajah T, Vandenberg A, Glahn RP (2013) Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: is there genetic potential for iron bioavailability? Field Crop Res 144:119–125

    Article  Google Scholar 

  • Delmer DP (2005) Agriculture in the developing world: connecting innovations in plant research to downstream applications. Proc Natl Acad Sci U S A 102:15739–15746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Tar’an B (2014) Genetic diversity and association mapping of iron and zinc concentration in chickpea (Cicer arietinum L.). Genome. doi:10.1139/gen-2014-0108

    PubMed  Google Scholar 

  • Djingove R, Mihaylova V, Lyubomirova V, Tsalev D (2013) Multielement analytical spectroscopy in plant ionomics. Res Appl Spectrosc Rev 48:384–424

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson M, Pfieffer W (2012) Nutritionally enhanced staple food crops. Plant Breed Rev 34:169–262

    Google Scholar 

  • Evans A (2009) The feeding of the nine billion: global food security. Chatham House, London. https://www.wfp.org/sites/default/files/alex_evans.pdf. Accessed 20 Aug 2014

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP (2009) The use of caco-2 cells in defining nutrient bioavailability: application to iron bioavailability of foods. In: McClements D, Decker E (eds) Designing functional foods: measuring and controlling food structure breakdown and nutrient absorption. Woodhead, Cambridge, pp 340–361

    Chapter  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Grusak MA (2000) Strategies for improving the iron nutritional quality of seed crops: lessons learned from the study of unique iron-hyperaccumulating pea mutants. Pisum Genet 32:1–5

    Google Scholar 

  • Grusak MA, Cakmak I (2005) Methods to improve the crop-delivery of minerals to humans and livestock. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 265–286

    Google Scholar 

  • Gupta DS, Thavarajah D, Knutson P, Thavarajah P, McGee JT, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L.), a rich source of folates. J Agric Food Chem 61:7794–7799

    Article  PubMed  Google Scholar 

  • Guzmán-Maldonado SH, Martínez O, Acosta-Gallegos J, Guevara-Lara FJ, Paredes-Lopez O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  CAS  PubMed  Google Scholar 

  • Hoekenga OA (2014) Genomics of mineral nutrient biofortification: calcium, iron and zinc. In: Tuberosa R et al (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 431–454

    Chapter  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–51

  • Iqbal A, Khalil IA, Ateeq N, Khan MS (2006) Nutritional quality of important food legumes. Food Chem 97:331–335

    Article  CAS  Google Scholar 

  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe SE (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol l49:285–293

    Article  Google Scholar 

  • Islam FMA, Beebe S, Muñoz M, Tohme J, Redden RJ, Basford KE (2004) Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool. Theor Appl Genet 108:243–252

    Article  PubMed  Google Scholar 

  • Ismail M (1999) The use of Caco-2 cells as an in vitro method to study bioavailability of iron. Malays J Nutr 5:31–45

    Google Scholar 

  • Karaköy T, Erdem H, Baloch FS, Toklu F, Eker S, Kilian B, Özkan H (2012) Diversity of macro- and micronutrients in the seeds of lentil landraces. Sci World J 2012:1–9

    Article  Google Scholar 

  • Klein MA, Grusak MA (2009) Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome 52:677–691

    Article  CAS  PubMed  Google Scholar 

  • Klein MA, Lopez-Millan AF, Grusak MA (2012) Quantitative trait locus analysis of root ferric reductase activity and leaf chlorosis in the model legume, Lotus japonicus. Plant Soil 351:363–376

    Article  CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Korth KL, Doege SJ, Park SH, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L, Nakata PA (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol 141:188–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar H, Dikshit HK, Singh A, Jain N, Kumari J, Singh AM, Singh D, Sarker A, Prabhu KV (2014) Characterization of grain iron and zinc in lentil (Lens culinaris Medikus culinaris) and analysis of their genetic diversity using SSR markers. Aust J Crop Sci 8:1005–1012

    CAS  Google Scholar 

  • Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Glahn RP, Arganosa GC, Warkentin TD (2014) Iron bioavailability in low phytate pea. Crop Sci. doi:10.2135/cropsci2014.06.0412

    Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Marroni F, Pinosio S, Di Centa E, Jurman I, Boerjan W, Felice N, Cattonaro F, Morgante M (2011) Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: towards next-generation Ecotilling. Plant J 67:736–745

    Article  CAS  PubMed  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7

    Article  Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Nair RM, Yang RY, Easdown WJ, Thavarajah D, Thavarajah P, Hughes JD, Keatinge JD (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agric 93:1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    CAS  PubMed  Google Scholar 

  • Nordin BC (2000) Calcium requirement is a sliding scale. Am J Clin Nutr 71:1381–1383

    CAS  PubMed  Google Scholar 

  • Orazaly M, Chen P, Zhang B, Zeng A (2014) Quantitative trait loci mapping for seed calcium content of soybean. Crop Sci 54:500–506

    Article  CAS  Google Scholar 

  • Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S88–S105

    Article  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Powell K (2007) Functional foods from biotech—an unappetizing prospect? Nat Biotechnol 25:525–531

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

  • Ramakrishnan U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60:S46–S52

    Article  PubMed  Google Scholar 

  • Ramamurthy RK, Jedlicka J, Graef GL, Waters BM (2014) Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Mol Breed 34:431–445

    Article  Google Scholar 

  • Ray H, Bett K, Tar’an B, Vandenberg A, Thavarajah D, Warkentin T (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean and lentil grown in Saskatchewan, Canada. Crop Sci 54:1698–1708

    Article  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Ismail M, Liew FY, Brock JH (1996) Iron transport across Caco-2 cell monolayers. Effect of transferrin, lactoferrin and nitric oxide. Biochim Biophys Acta 1289:291–297

    Article  PubMed  Google Scholar 

  • Sankaran RP, Huguet T, Grusak MA (2009) Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor Appl Genet 119:241–253

    Article  CAS  PubMed  Google Scholar 

  • Santos CA, Boiteux LS (2013) Breeding biofortified cowpea lines for semi-arid tropical areas by combining higher seed protein and mineral levels. Genet Mol Res 12:6782–6789

    Article  CAS  PubMed  Google Scholar 

  • Schneeber K, Weigel D (2011) Fast-forward genetics enabled by new sequencing echnologies. Trends Plant Sci 16:282–288

    Article  Google Scholar 

  • Shunmugam ASK, Liu X, Stonehouse R, Tar’an B, Bett KE, Sharpe AG, Warkentin TD (2014) Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population. Crop Sci. doi:10.2135/cropsci2014.08.0544

    Google Scholar 

  • Singh UM, Sareen P, Sengar RS, Kumar A (2013) Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35:2641–2653

    Article  CAS  Google Scholar 

  • Sompong U, Kaewprasit C, Nakasathien S, Srinives P (2010) Inheritance of seed phytate in mung bean (Vigna radiata (L.) Wilczek). Euphytica 171:389–396

    Article  CAS  Google Scholar 

  • Sompong U, Somta P, Raboy V, Srinives P (2012) Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci 62:87–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTL from germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Taunk J, Yadav NR, Yadav RC, Kumar R (2012) Genetic diversity among green gram (Vigna radiata L. Wilczek) genotypes varying in micronutrient content using RAPD. Indian J Biotechnol 11:48–53

    CAS  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

  • Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32:243–255

    Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34: 169–194

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warkentin TD, Delgerjav T, Arganosa G, Rehman AU, Bett KE, Anbessa YK, Rossnagel B, Raboy V (2012) Development and characterization of low-phytate pea. Crop Sci 52:74–78

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • WHO (2000) Guidelines on food fortification with micronutrients for the control ofmicronutrient malnutrition. Geneva: World Health Organization. http://www.who.int/nutrition/publications/micronutrients/GFF_Part_1_en.pdf?ua=1. Accessed 27 Aug 2014

  • Wilcox J, Premachandra G, Young K, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Article  Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Zhang B, Chen P, Shi A, Hou A, Ishibashi T, Wang D (2009) Putative quantitative trait loci associated with calcium content in soybean seed. J Hered 100:263–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AB, SK, AKP, US, DS and NPS acknowledge support from Indian Council of Agricultural Research (ICAR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bohra.

Additional information

Communicated by: Andrzej Górny

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohra, A., Sahrawat, K.L., Kumar, S. et al. Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genetics 56, 151–161 (2015). https://doi.org/10.1007/s13353-014-0268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-014-0268-z

Keywords

  • Biofortification
  • Genetic diversity
  • Genomics
  • Hidden hunger
  • Legumes
  • Malnutrition
  • QTL