Journal of Applied Genetics

, Volume 56, Issue 1, pp 107–113 | Cite as

Genetic parameters and investigation of genotype × environment interactions in Nellore × Hereford crossbred for resistance to cattle ticks in different regions of Brazil

  • D. R. Ayres
  • R. J. Pereira
  • A. A. Boligon
  • F. Baldi
  • V. M. Roso
  • L. G. Albuquerque
Animal Genetics • Original Paper


Data from 6,156 Nellore × Hereford crossbred cattle, distributed in 18 herds located in the Brazilian states of Mato Grosso do Sul (MS), São Paulo (SP), Paraná (PR) and Rio Grande do Sul (RS), were analysed in order to investigate genetic variation for resistance to the cattle tick through the estimation of variance components and genetic parameters for counting ticks (Rhipicephalus (Boophilus) microplus) in natural infestation, and also a possible genotype × environment interaction. The tick count data (CC) were transformed to log10(CC + 1) and grouped into two regions, defined by cluster analysis and analysed using the method of restricted maximum likelihood. The statistical model included the additive genetic effect as random and fixed effects of the contemporary group (CG) and genetic group (GG) as classificatory and the age of the animal at the time of counting (linear effect) and individual heterozygosity (linear effect, ranging from 0 to 1) as covariates. In the studied regions, the effect of heterosis found was inversely proportional; in other words, the count of ticks decreased with the increase of heterozygosity. The observed heritability estimation for resistance to tick infestation were 0.12 ± 0.04 and 0.11 ± 0.04 for groups A (RS and south PR) and B (MS, SP and north PR), respectively. The results of this study suggest that selection for animals resistant to ticks would be possible using the tick count to estimate the genetic value of animals, but with a slow genetic progress. The genetic correlation for tick count between the two groups (A and B) was 0.84 ± 0.27 and genotype × environment interaction for this trait was not observed in the studied population.


Beef cattle Ectoparasites REML 



This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. The authors are grateful to the Conexão Delta G programme for the data provided.


  1. Albuquerque LG, Mercadante MEZ, Eler JP (2006) Recent Studies on the genetic basis for selection of Bos indicus for beef production. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, August 2006Google Scholar
  2. Budeli MA, Nephawe KA, Norris D, Selapa NW, Bergh L, Maiwashe A (2009) Genetic parameter estimates for tick resistance in Bonsmara cattle. S Afr J Anim Sci 39:321–327Google Scholar
  3. Burrow HM (2001) Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livest Prod Sci 70:213–233CrossRefGoogle Scholar
  4. Burrow HM (2006) Utilization of diverse breed resources for tropical beef production. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, August 2006Google Scholar
  5. Calus MPL, Groen AF, de Jong G (2002) Genotype × environment interaction for protein yield in Dutch dairy cattle as quantified by different models. J Dairy Sci 85:3115–3123PubMedCrossRefGoogle Scholar
  6. Calus MPL, Janss LLG, Veerkamp RF (2006) Genotype by environment interaction for somatic cell score across bulk milk somatic cell count and days in milk. J Dairy Sci 89:4846–4857PubMedCrossRefGoogle Scholar
  7. Cardoso V, Fries LA, Albuquerque LG (2000) Comparação de diferentes métodos de avaliação da resistência genética de bezerros F1 Angus × Nelore desmamados ao carrapato Boophilus microplus. In: Proceedings of the III Simpósio Nacional de Melhoramento Animal, Belo Horizonte, Brazil. Communication, pp 460–463Google Scholar
  8. Conceição V Jr (1997) Estudo das relações entre resistência genética a carrapatos e características produtivas na espécie bovina. Ph. D. thesis. Escola de Veterinária, Universidade Federal de Minas GeraisGoogle Scholar
  9. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman Group, EdinburghGoogle Scholar
  10. Fraga AB, Alencar MM, Figueiredo LA, Razook AG, Cyrillo JNG (2003) Análise de fatores genéticos e ambientais que afetam a infestação de fêmeas bovinas da raça Caracu por carrapatos (Boophilus microplus). Rev Bras Zootec 32:1578–1586CrossRefGoogle Scholar
  11. Guaragna GP, Carvalho JBP, Gambini LB, Barbosa MIA (1992) Resistência comparativa de tourinhos das raças Holandesa e Mantiqueira à infestação artificial de carrapato (Boophilus microplus, CANESTRINI). Bol Ind Anim 49(2):73–82Google Scholar
  12. Ibi T, Hirooka H, Kahi AK, Sasae Y, Sasaki Y (2005) Genotype × environment interaction effects on carcass traits in Japanese black cattle. J Anim Sci 83:1503–1510PubMedGoogle Scholar
  13. Jonsson NN (2006) The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet Parasitol 137:1–10PubMedCrossRefGoogle Scholar
  14. Kasai N, Labruna MB, Pires AV, Louvandini H, Abdalla AL, Gennari SG (2000) Dinâmica populacional de Boophilus microplus (Canestrini, 1887) em bovinos leiteiros mantidos em manejo de pastejo rotativo de capim—elefante. Arq Bras Med Vet Zoo 5Google Scholar
  15. Madalena FE, Teodoro RL, Lemos AM, Oliveira GP (1985) Causes of variations of field burdens of cattle ticks (B.) microplus. Bras J Genet 3(2):361–375Google Scholar
  16. Martins JR, Evans DE, Ceresér VH, Corrêa BL (2002) Partial strategic tick control within a herd of European breed cattle in the state of Rio Grande do Sul, southern Brazil. Exp Appl Acarol 27(3):241–251PubMedCrossRefGoogle Scholar
  17. Meyer K (2007) Wombat—a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J Zhejiang Univ Sci B 8:815–821PubMedCentralPubMedCrossRefGoogle Scholar
  18. Nauta WJ, Veerkamp RF, Brascamp EW, Bovenhuis H (2006) Genotype by environment interaction for milk production traits between organic and conventional dairy cattle production in the Netherlands. J Dairy Sci 89:2729–2737PubMedCrossRefGoogle Scholar
  19. Pegolo NT, Albuquerque LG, Lôbo RB, de Oliveira HN (2011) Effects of sex and age on genotype × environmental interaction for beef cattle body weight studied using reaction norm models. J Anim Sci 89:3410–3425PubMedCrossRefGoogle Scholar
  20. Prayaga KC (2003) Evaluation of beef cattle genotypes and estimation of direct and maternal genetic effects in a tropical environment. 2. Adaptive and temperament traits. Aust J Agric Res 54:1027–1038CrossRefGoogle Scholar
  21. Prayaga KC, Henshall JM (2005) Adaptability in tropical beef cattle: genetic parameters of growth, adaptive and temperament traits in a crossbred population. Aust J Exp Agric 45:971–983CrossRefGoogle Scholar
  22. Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15(3):469–485CrossRefGoogle Scholar
  23. Rocha CMBM (1999) Aspectos relevantes da biologia do Boophilus microplus (Cannestrini, 1887). Lavras: Editora UFLA, 1999. 20 pp. (Boletim técnico n°32). Disponível em: Accessed April 2011
  24. Roso VM, Schenkel FS (2006) AMC—a computer programme to assess the degree of connectedness among contemporary groups. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, August 2006, pp 26–27Google Scholar
  25. Santos JCB Jr, Furlong J, Daemon E (2000) Controle do carrapato Boophilus microplus (Acari: Ixodidae) em sistemas de produção de leite da microrregião fisiográfica fluminense do grande Rio—Rio de Janeiro. Cienc Rural 30:305–311CrossRefGoogle Scholar
  26. SAS (1996) SAS user’s guide: statistics. SAS Inst. Inc., Cary, NC, p 983Google Scholar
  27. Seebeck RM, Springell PH, O’Kelly JC (1971) Alterations in host metabolism by the specific and anorectic effects of the cattle tick (Boophilus microplus). I. Food intake and body weight growth. Aust J Biol Sci 24:373–380PubMedGoogle Scholar
  28. Seifert GM (1971) Ecto- and endoparasitic effects on the growth rates of Zebu crossbred and British cattle in the field. Aust J Agric Res 22:839–850CrossRefGoogle Scholar
  29. Silva AM (2006) Estudo da infestação de fêmeas bovinas e corte pelo Rhipicephalus (Boophilus) microplus, Haematobia irritans e Dermatobia hominis. Thesis, Universidade Federal de São CarlosGoogle Scholar
  30. Silva AM, Alencar MM, Regitano LAC (2007) Artificial infestation of Boophilus microplus in beef cattle heifers of four genetic groups. Genet Mol Biol 30(4):1150–1155CrossRefGoogle Scholar
  31. Silva AM, Alencar MM, Regitano LCA, Oliveira MCS (2010) Infestação natural de fêmeas bovinas de corte por ectoparasitas na Região Sudeste do Brasil. Rev Bras Zootec 39:1477–1482CrossRefGoogle Scholar
  32. Teixeira RA, Albuquerque LG, Alencar MM, Dias LT (2006) Interação genótipo-ambiente em cruzamentos de bovinos de corte. Rev Bras Zootec 35:1677–1683CrossRefGoogle Scholar
  33. Veríssimo CJ, Silva RG, Oliveira AAD (1997) Resistência e suscetibilidade de bovinos leiteiros mestiços ao carrapato Boophilus microplus. Bol Ind Anim 54:1–10Google Scholar
  34. Wambura PN, Gwakisa OS, Silayo RS, Rugaimukamu EA (1998) Breed-associated resistance to tick infestation in Bos indicus and their crosses with Bos taurus. Vet Parasitol 77:63–70PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2014

Authors and Affiliations

  • D. R. Ayres
    • 1
    • 2
  • R. J. Pereira
    • 1
    • 2
  • A. A. Boligon
    • 1
  • F. Baldi
    • 1
  • V. M. Roso
    • 3
  • L. G. Albuquerque
    • 1
  1. 1.Departamento de Zootecnia, Faculdade de Ciências Agrárias e VeterináriasUniversidade Estadual PaulistaJaboticabalBrazil
  2. 2.Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de MatoGrossoCampus RondonópolisBrazil
  3. 3.GenSys Consultores Associados S/S Ltda.Porto AlegreBrazil

Personalised recommendations